

Autonomous Program Structure of Second Year B. Tech. Third Semester (Mechanical Engineering) Academic Year: 2021-2022 Onwards

Course	Comme Tide	S	eachir chem rs /W	e	Exa	minatio	on Sche	eme	Total	Credit
Code	Course Title	Lecture	Tutorial	Practical	In Sem.	End Sem.	Practical	Oral	Marks	Credit
20BSME301	Calculus and Statistics (C&S)	3	1	0	50	50	0	0	100	4
20ME301	Engineering Metallurgy (EM)	3	0	0	50	50	0	0	100	3
20ME302	Engineering Thermodynamics (ET)	2	1	0	50	50	0	0	100	3
20ME303	Machining and Machine Tool Operations (MMTO)	3	0	0	50	50	0	0	100	3
20ME304	Strength of Materials (SOM)	3	1	0	50	50	0	0	100	4
20HS 301	Universal Human Values-II	2	1	0	50	50	0	0	100	3
20ME305L	Computer Aided Machine Drawing lab (CAMD Lab)	0	0	4	25	0	25	0	50	2
20ME301L	Engineering Metallurgy Lab (EM Lab)	0	0	2	25	0	0	25	50	1
20ME303L	Machining and Machine Tool Operations Lab (MMTO Lab)	0	0	2	25	0	25	0	50	1
20AC301	Audit Course (AC)	0	0	2	0	0	0	0	0	-
	Total	16	4	10	375	300	50	25		
	Grand Total		30	·	6'	75	7	5	750	24

S. Y. B. Tech. – Semester-I

Course Code	Calculus & Statistics	I	4	Т	Р
20BSME301		3	;	-	-
Pre-requisite	First order linear ordinary differential equations, Basics Vector Algebra, Integration – basic properties, standa results, Beta & Gamma Functions, Basics of probability.	ad Dy	yllab ersio		
				V	:1.1
Course Objective	es:	•			
To make student	\$				
1. To provide	e sound knowledge of engineering mathematics				
2. Strengther	thinking power to analyze				
3. Solve engi	neering problems in their respective areas.				
Course Outcome	s:				
Students will be	able to				
 Solve the high Compute the tequation. Apply the comparison of t	ompletion of the course, student will be able to her order linear differential equation and apply it to the mass-sp transforms of simple discrete and continuous functions and sol herepts of vector calculus to find vector differentiation and vect herepts of probability distributions and statistics to interpret the	ve partia	l dif	ferent	ial
Unit/Module: 1	Higher Order Linear Differential equation9and application	hours	CO	D: 1	
-	ear differential Equation with constant coefficients, Application lems. Mass Spring system, Damping effects, Resonance.	ns in solv	ving		
Unit/Module: 2	Transforms 9	hours	CO	D: 2	
formula for Sine Transforms of d Existence of DTF	rms: Finite Fourier Sine transform, Finite Fourier Cosine transform, Inversion formula for Cosine transform. Finite Fourier transforms (DTFT) of T, Properties of DTFT, Inverse DTFT.	ourier Sin f standa	ne ai rd s	nd Co equen	sine
	prm: Definition of Laplace transform, Inverse Laplace transform of standard functions and problems.	nstorm	, La	place	anc

Un	it/Module: 3	Partial Differential Equations	7 hours	CO: 3
	sic Concepts, T ving of P.D.E	Types of P.D.E. (Hyperbolic, Elliptic, Parabolic). Use of F	inite Fourier	Transforms for
Un	it/Module: 4	Vector Differentiation	5 hours	CO: 4
Cu	*	ation of vector differentiation, vector differential operator, derivative, Solenoidal, Irrotational and Conservative fields		•
Un	it/Module: 5	Vector Integration	6 hours	
	e, Surface and orem.	Volume integrals, Work-done, Green's Lemma, Gauss's I	Divergence th	heorem, Stoke's
Un	it/Module: 6	Statistics and Probability Distribution	6 hours	
		al tendency, Measure of Dispersion, Probability, Random n, Normal , Weibull.	variables, D	istributions –
		Total Lab hours:	42 hours	
Te	xt Books:		nours	
1.	B. S. Grewa	l, "Higher Engineering Mathematics ", Khanna Publicatio	ns.	
2.	B. V. Raman	na, "Higher Engineering Mathematics", Tata McGraw Hil	Il Publication	ns (2007)
3.	Peter V. O'n (5th edition	eil, 'Advanced Engineering Mathematics', Thomson Brook) (2007).	s / Cole, Sin	gapore
Re	ference Books	:		
1.		L.C. Barrette, "Advanced Engineering Mathematics", McG 6th edition)(2003)	Graw Hill Pu	blications,
2.	Erwin Kreys (2004).	zig ,'Advanced Engineering Mathematics' Wiley Eastern	Ltd. (8th Stu	dent Edition),
3.	S.C. Gupta, revised editi	V.K. Kapoor, 'Fundamental of Mathematical Statistics', S. on) (2002).	Chand & So	ons (10th
4	Michael D. ((1998).	Greenberg, 'Advanced Engineering Mathematics ', Prentice	e hall Colleg	e Div.,

Course Code	Engineering Metallurgy		L	Т	Р
20ME301			3	-	-
Pre-requisite	Engineering Physics, Engineering Chemistry, Engineer mathematics	ing Sy			rsion
					V:1.1
Course Objective	s:				
 Understand Understand Correlate th Course Outcomes Students will be a Correlate th define and Define and Cite usual to common fa Read binary Specify mediate 		egrity of ma	ateria	als wit	h
Unit/Module: 1	Crystal Structure:	6hours	CO	D: 1	
	e crystal structures, Ceramics. Imperfection in solids: Poin slocation strengthening mechanisms and slip systems, crit				tress.
Unit/Module: 2	Mechanical Property measurement:	6hours	CO	D: 2	
stress- strain curve toughness and elas	on and torsion tests; Young"s modulus, relations between s, generalized Hooke"s law, yielding and yield strength, d tic recovery; Hardness: Rockwell, Brinell and Vickers and on to non-destructive testing (NDT	uctility, resi	ilien	ce,	
Unit/Module: 3	Failure theories:	8 hours	C	D: 3	

Ductile and brittle failure mechanisms, Tresca, Von-mises, Maximum normal stress, Mohr-Coulomb and Modified Mohr-Coulomb; Fracture mechanics: Introduction to Stress intensity factor approach and Griffith criterion. Fatigue failure: High cycle fatigue, Stress-life approach, SN curve, endurance and fatigue limits, effects of mean stress using the Modified Goodman diagram; Fracture with fatigue, Unit/Module: 4 6 hours **CO: 4 Phase diagrams:** Phase diagrams: Interpretation of binary phase diagrams and microstructure development; eutectic, peritectic, peritectoid and monotectic reactions. Iron Iron-carbide phase diagram and microstrctural aspects of ledeburite, austenite, ferrite and cementite, cast iron. Unit/Module: 5 **Metals and alloys:** 6 hours CO: 5 Alloying of steel, properties of stainless steel and tool steels, maraging steels- cast irons; grey, white, malleable and spheroidal cast irons- copper and copper alloys; brass, bronze and cupro-nickel; Aluminium and Al-Cu – Mg alloys- Nickel based superalloys and Titanium alloys Unit/Module: 6 Heat treatment of Steel: 6 hours CO: 6 Annealing, tempering, normalising and spheroidising, isothermal transformation diagrams for Fe-C alloys and microstructure development. Continuous cooling curves and interpretation of final microstructures and properties- austempering, martempering, case hardening, carburizing, nitriding, cyaniding, carbo-nitriding, flame and induction hardening, vacuum and plasma hardening **Total Lecture hours:** 36 hours **Text Books:** Callister's Material Science and Engineering", W.D. Callister, D.G.Rethwisch, Wiley, 2016, Second edition. 1. 2 Materials engineering, science, processing and design, Michael Ashby, Hugh Shercliff, David Cebon, Butterworth-Heineman, 2008 **Reference Books:** "Properties of Engineering materials", R.A. Higgins, ELBS, Edward Arnold, 1988. 1. 2. "Material Science & Engineering." Raghavan V., Prentice Hall of India, New Delhi. 2003 3. "Material selection in mechanical design', Michael Ashby, Butterworth-Heinemann, 3/e, 2005 An Introduction to properties, Applications and design, Third edition, Ashby and Jones, Butterworth 4 Heinemann. Relevant ISO and Indian standards 5.

	(An Autonomous Institute Affiliated to Savitribai Phule Pune Univers	sity)		College of For	1 mins f Engineering Women
Course Code	Engineering Thermodynamics		L	Т	Р
20ME302			2	1	-
Pre-requisite	Engineering Physics, Engineering Mathematics, Engine Chemistry	eering S	yllab	us Ve	rsion
					V:1.1
Course Objectives	8:				
 To understa To get conv 	d illustrate laws of thermodynamics and concept of entropy and availability. Versant with properties of steam, vapor processes and steam the performance of various thermodynamics cycles.	n trap.			
Course Outcomes	:				
 Students with Students with 	Il be able to apply laws of Thermodynamics to various pr Il understand the concept of entropy and availability. Il gain the knowledge about steam properties and steam to Il be able to do performance calculations for various therm	-ap.	cycle	es.	
Unit :- 1	Laws of Thermodynamics	6 hours	CO): 1	
applied to closed	odynamics, second law of thermodynamics, zeroth law of system and open system, Second law of thermodynar w applied to heat engine, heat pump and refrigeration cyc	nics, Corol			
Unit :- 2	Entropy	4 hours	CO): 2	
	y, Entropy – a system property, Evaluation of entropy char uses, Principle of increase of entropy- entropy generation.	nge for solic	ls,		
Unit :- 3	Properties of Steam	5 hours	CO): 3	
Formation of steam	n, Properties of steam, First law applied to steam processe	s, Steam tra	p.		
Unit :- 4	Thermodynamic Vapour Cycles	5 hours	CO): 4	
Carnot cycle, Rank	ine cycle, Reheat and Regeneration	1			
Unit :- 5	Thermodynamic Gas Cycles	5 hours): 4	

Otto cycle, Diesel cycle, Dual cycle

	Total hours: 25 hours
Tey	t Books and Reference Books
1.	Principles of Engineering Thermodynamics- Moran, Shapiro, Boettner, Baily Eighth Edition, Wiley Publication.
2.	P. K. Nag, Engineering Thermodynamics, 5th Edition, Tata McGraw Hill Publications
3.	C.P. Arora, Engineering Thermodynamics, Tata McGraw Hill
4.	S. Domkundwar, C. P. Kothandaraman, Anand Domkundwar, Thermal Engineering, Dhanpat Rai Publishers
5.	Cengel and Boles, "Thermodynamics – An Engineering Approach", 7th Edition, Tata Mc Graw Hill Publication.
6.	Rayner Joel, "Basic Engineering Thermodynamics", Addison Wesley Longman

Course Code	Machining and Machine Tool Operation (MMTO)	15 I	L	Т	Р
20ME303			3	-	-
Pre-requisite		Sy	llabu	s Ve	rsion
					V:1.1
Course Objectives	5:	I			
2. To acquain	ize with the basic concepts of machining science. t with various single and multipoint cutting tools designin e students understand the economics of machining proces				
Course Outcomes	:				
tool life and 3. Apply featu 4. Incorporate	opropriate single or multipoint cutting tool parameter to evel surface finish for machining operation. The surface finish for machining operation and applications of non-traditional machining process use of different locating and clamping devices for jigs and the need of automation and its use in manufacturing.	ses.	-	ce, p	ower,
Unit/Module: 1	Machine tools	12 hours	CO:	1	
-	(turning, drilling and milling) & finishing processes , economics of machining	(grinding, la	apping	g, ho	oning)
Unit/Module: 2	Metal Cutting Theory	10 hours	CO:	2	
formation in meta	int cutting tools (hobs and form tools), tool geometry and al machining, force relationships and the merchant ec- chining, Tool life and tool wear.			2	
Unit/Module: 3	Non-conventional machining processes	7 hours	CO:	3	
USM, WJM/WJAM applications.	A, Chemical Machining, ECM, EDM, LBM, EBM, IBM J	process parai	meters	and	1

Jig,	fixtures types	(basic and modular) and applications, design of jigs and fi	xtures.	
Uni	t/Module: 5	Automation	7 hours	CO: 5
CNO	C types, system	ns, codes, manufacturing automation (machining center, F	MS).	
		Total Lecture hours:	42 hours	
Tex	t Books:			
1.	Fundamental	s of modern manufacturing, Fifth Edition, Mikell P. Groov	ver, Wiley P	ublication.
2.	Manufacturir Hall.	ng, Engineering and Technology SI, Serope Kalpakjian,	Steven R. S	chmid, Prentice
Ref	erence Books:			
1.	Fundamental	s of Metal Machining and Machine Tools, Third Edition b	y Winston A	A. Knight,
	Geoffrey Boo	othroyd, CRC press Taylor and Francis group.		
2.	Jigs and Fixt	ure, P.H. Joshi, Tata McGraw-Hill		
3.	Metal Cutting	g Principles (2nd Edition), by Milton Clayton Shaw, Oxfor	rd University	y Press.

Course Code	Strength of Materials	I	Ĺ	Т	Р		
20ME304			3 1				
Pre- requisites	Engineering Mechanics	Sy	Syllabus Version				
					V:1.1		
Course Objec	tives:						
planes 2. Explain 3. Determi 4. Develop	stresses, strains and elastic constants and evaluate the p basic concepts of shear force and bending-moment. In the maximum Bending and shear stress in a given bear o slope and Deflection equations for beams subjected to v the buckling strength of columns and torsional strength	um. various loads	k.	-	incipal		
Course Outco		of eneural f		015			
Students will							
 Draw S Formu diagran Formu 	te principal stress and principal strain. SF and BM diagrams for various beams under different lo late the bending and shear stresses equations and be able ns. late slope and deflection equations for beams subjected to nine torsional strength and buckling strength.	to draw bene	ding a		ar stress		
Unit :1	Simple and Compound Stress and Strain	10 hours	CO:	1			
Modulus. Inte strains in dete self-weight. T Concept of pr position of pr	Hooke"s law, Poisson"s ratio, Modulus of Elasticity prelation between elastic constants, Stress-strain diagr rminate and indeterminate, homogeneous and composite emperature stresses in simple members, Normal and sl incipal planes, derivation of expression for principal s incipal planes and planes of maximum shear. Graphic ipal stresses in shaft subjected to torsion, Bending mo- tion and bending moments	ram, factor e bars under hear stresses stresses and cal solution oment and a	of sat conce s on a maxin using axial	fety. S entrate ny obl mum s Mohr' thrust	tresses and d loads and lique plane. hear stress, "s circle of Concept of		
equivalent tors Theories of	Elastic Failure :-Maximum Principal Stress Theory ortion Theory, Maximum Strain theory	y, Maximur	n she	ear str	ess theory,		

Shear force and bending moment diagrams for statically determinate beam due to concentrated load, uniformly distributed load, uniformly varying load and couple, Relationship between rate of loading,

shea	ar force and be			
	Unit : 3	Bending and Shear Stresses in Beams	8 hours	CO: 3
moi	ment of area o	: Theory of simple bending, assumptions, derivation f common cross sections (rectangular, I,T,C) with respe- ss distribution diagrams, moment of resistance and section	ect to centro	
diag		Concept, derivation of shear stress distribution formu mon symmetrical sections, maximum and average shear d web.		
	Unit : 4	Slope and Deflection of Beams.	6 hours	CO: 4
	gration metho	bending moment and slope, slope and deflection of d (Macaulay''s method), derivation of formula for slope		
	Unit : 5			
holl tors Buc	rsion of circu low, homogene ion equation, s ckling of colur	Torsion and Buckling. lar member: Stresses, strain and deformations in dete cous and composite circular cross section subjected to tw tresses due to combined torsion, bending and axial force of mns: Concept of buckling of columns, derivation of Euler hinged ends, concept of equivalent length for various e	isting mome on shafts. "s formula f	nt, derivation o
holl tors Buc for	rsion of circu low, homogene ion equation, s ckling of colur	lar member: Stresses, strain and deformations in dete eous and composite circular cross section subjected to tw tresses due to combined torsion, bending and axial force of nns: Concept of buckling of columns, derivation of Euler hinged ends, concept of equivalent length for various e	rminate sha isting mome on shafts. "s formula f nd condition	fts of solid and nt, derivation o for buckling load
holl tors Buc for colu	rsion of circu low, homogene tion equation, s ckling of colur column with	lar member: Stresses, strain and deformations in dete eous and composite circular cross section subjected to tw tresses due to combined torsion, bending and axial force of nns: Concept of buckling of columns, derivation of Euler hinged ends, concept of equivalent length for various e Total Theory Lecture hours:	rminate sha isting mome on shafts. "s formula f nd condition	fts of solid and nt, derivation o for buckling load
holl tors Buc for colu	rsion of circu low, homogene ion equation, s ckling of colur column with umns	lar member: Stresses, strain and deformations in dete eous and composite circular cross section subjected to tw tresses due to combined torsion, bending and axial force of nns: Concept of buckling of columns, derivation of Euler hinged ends, concept of equivalent length for various e Total Theory Lecture hours:	rminate sha isting mome on shafts. "s formula f nd condition	fts of solid and nt, derivation o for buckling load
holl tors Buc for colu Tut 1.	rsion of circu low, homogene- tion equation, s ckling of colur column with umns torial Assignm Solving num	lar member: Stresses, strain and deformations in dete eous and composite circular cross section subjected to tw tresses due to combined torsion, bending and axial force of nns: Concept of buckling of columns, derivation of Euler hinged ends, concept of equivalent length for various e Total Theory Lecture hours: ments	rminate sha isting mome on shafts. "s formula f nd condition 36 hours	fts of solid and nt, derivation o for buckling load
holl tors Buc for colu Tut 1. 2.	rsion of circu low, homogene- tion equation, s ckling of colur column with 1 umns torial Assignm Solving num Analytical ar	lar member: Stresses, strain and deformations in detereous and composite circular cross section subjected to twe tresses due to combined torsion, bending and axial force of mns: Concept of buckling of columns, derivation of Euler hinged ends, concept of equivalent length for various endinged ends, concept of equivalent length for various endinged ends are concepted to the stress and strains Total Theory Lecture hours: ments	rminate sha isting mome on shafts. "s formula f nd condition 36 hours	fts of solid and nt, derivation o for buckling load
holl tors Buc for colu Tut	csion of circul low, homogene ion equation, s ckling of colur column with umns corial Assignm Solving num Analytical ar Drawing SFI	lar member: Stresses, strain and deformations in detereous and composite circular cross section subjected to twe tresses due to combined torsion, bending and axial force of mns: Concept of buckling of columns, derivation of Euler hinged ends, concept of equivalent length for various enderstand the sector of the sector o	rminate sha isting mome on shafts. "s formula f nd condition 36 hours	fts of solid and nt, derivation o for buckling load
holl tors Buc for colu Tut 1. 2. 3.	rsion of circu low, homogene- tion equation, s ckling of colur column with 1 umns torial Assignm Solving num Analytical ar Drawing SFI Determine be	lar member: Stresses, strain and deformations in detereous and composite circular cross section subjected to twee tresses due to combined torsion, bending and axial force of mns: Concept of buckling of columns, derivation of Euler hinged ends, concept of equivalent length for various enderstands Total Theory Lecture hours: Total on simple stress and strains and Graphical Solution (Mohr*'s Circle) for compound stress D and BMD for standard beam and loading conditions.	rminate sha isting mome on shafts. "s formula f nd condition 36 hours ses.	fts of solid and nt, derivation o for buckling load ns, safe load of

Те	ext Books:
1.	Strength of Materials S. Ramamrutham, Dhanpat Rai Pvt. Ltd.
2.	Elements of Strength of Materials, Timoshenko and Young Affiliated East West Press.
3.	Mechanics of Materials S. S. Rattan, TMH Pvt. Ltd.
4.	Mechanics of Structures S. B. Junnarkar, Charotar Publication
5.	S.S Bhavikatti, "Strength of Materials", Third Edition Vikas Publishing house Pvt Ltd, New Delhi.
Ref	erence Books:
1.	Mechanics of Materials, by Russell C. Hibbeler
2.	Introduction to Mechanics of Solids - by E.P. Popov, Prentice Hall Publication.
3.	Singer and Pytel - Strength of materials - Harper and row Publication.
4.	B.K. Sarkar - Strength of Material - Tata McGraw Hill New Delhi.
5.	Beer and Johnston - Strength of materials - CBS Publication.

Course Code	Universal Human Values-II	L	Т	Р			
20HS301		2	1				
Pre-requisites	Nil	Syll	abus V	ersion			
			V:1				
Course Objective	es:	1					
well as towards h rest of existence. towards value-bas 3. To highlight p conduct, trustful a Course Outcome		ne Human an Values terms of g interactio	reality a and mo ethical n with 1	and th vemen huma: Nature			
sustained solution CO2: Compare do able to see that the CO3: Develop N fulfillment in rela CO4:Understand	d human values which is only the solution of most of the pre a could emerge only through understanding of value-based livit esires of "I" and "Body" distinctly. If any desire appears relate e feeling is related to I while the physical facility is related to t fatural acceptance (intention) which is always for living in 1 tionships. the whole existence to see the interconnectedness in the Nature Sustainable solutions to the problems in the society and the Nature	ng ated to bot the body harmony w	h, stude	nts ar			
Module 1	ntroduction to Value Education 6	hours					
Understanding Val Happiness and Pro-	ue Education: Self-exploration as the Process for Value Educa sperity – the Basic Human Aspirations - Right Understanding, Happiness and Prosperity – Current Scenario : Method to Fulf	Relations	hip and	ın			
Module 2	Harmony in the Human Being 6	hours					
Inderstanding Hu	man being as the Co-existence of the Self and the Body - Disti						
Needs of the Self a	and the Body - The Body as an Instrument of the Self - Underst the Self with the Body - Programme to ensure self-regulation a			in the			

Harmony in the Family – the Basic Unit of Human Interaction: Values in Human-to-Human Relationship 'Trust' the Foundational Value in Relationship, -,,Respect" as the Right Evaluation - Understanding Harmony in the Society - Vision for the Universal Human Order. 4 hours Module 4 Harmony in the Nature/Existence Understanding Harmony in the Nature - Interconnectedness, self-regulation and Mutual Fulfillment among the Four Orders of Nature - Realizing Existence as Coexistence at All Levels - The Holistic Perception of Harmony in Existence. Implications of the Holistic Understanding – a Look at Module 5 6 hours **Professional Ethics** Natural Acceptance of Human Values - Definitiveness of (Ethical) Human Conduct - A Basis for Humanistic Education, Humanistic Constitution and Universal Human order - Competence in Professional Ethics - Holistic Technologies, Production Systems and Management Models-Typical Case Studies -Strategies for Transition towards Value-based Life and Profession. **Total Theory Lecture hours:** 28 hours **Text Books:** R. R. Gaur, R. Asthana, G. P. Bagaria, "The Textbook A Foundation Course in Human Values and 1. Professional Ethics", Excel Books, New Delhi, (2nd Revised Edition), (2019). R. R. Gaur, R. Asthana, G. P. Bagaria, "Teachers' Manual for A Foundation Course in Human 2. Values and Professional Ethics", Excel Books, New Delhi, (2nd Revised Edition), (2019). **Reference Books:** 1. A. Nagaraj, "Jeevan Vidya: EkParichaya", Jeevan Vidya Prakashan, Amarkantak, (1999). 2. A.N. Tripathi, "Human Values", New Age Intl. Publishers, New Delhi, (2004). 3. Mohandas Karamchand Gandhi, "The Story of My Experiments with Truth", Prakash books Publishers, Daryaganj, New Delhi. 4. E. F. Schumacher, "Small is Beautiful", Harper Collins Publishers, Noida, Uttar Pradesh, (2010). Cecile Andrews, "Slow is Beautiful", New Society Publishers, Canada. 5. J. C. Kumarappa, "Economy of Permanence", Sarva Seva Sangh Prakashan, Wardha, Sevagram, (2017).6 Pandit Sunderlal, "Bharat Mein Angreji Raj", Prabhat Prakashan, New Delhi (2018). 7 Dharampal, "Rediscovering India", Society for Integrated Development of Himalayas, (2003). 8 9 Mohandas Karamchand Gandhi, "Hind Swaraj or Indian Home Rule", Navajivan Publication House, Ahemadabad. 10 Maulana Abdul Kalam Azad, "India Wins Freedom", Orient BlackSwan, (1989). Romain Rolland, "Swami Vivekananda", Advaita Ashrama Publication, Ramkrishna Math, (2nd 11 Edition), (2010). 12 Romain Rolland, "Gandhi", Srishti Publishers & Distributor, (2002).

Course Code	Engineering Metallurgy Lab (EM-L)	L	Т	Р
20ME301L		-	-	2
Pre-requisite	Engineering Physics, Engineering Chemistry, Engineering mathematics	Syllab	ous Ve	rsion
				V:1.1

The assessment will consist of two components:

- 1. Evaluation for performing practical and attending demonstrations in predefined closed system of lab instructions (Demonstration and exercise type of lab activity: **5 marks**)
- 2. Task based performance (Structured enquiry type and open ended enquiry type of lab activity: **20 marks**)

Course Objectives:

Course prepares students to

- 1. To provide first-hand experience of facilities for materials property testing and treating.
- 2. To provide an understanding of structures in material and their relation to properties

Course Outcomes:

Students will be able to.

- 1. Implement safety measures required in the laboratory
- 2. Measure mechanical properties and propose testing method for mechanical properties considered in design, quality assurance and servicing of engineering components
- 3. Inspect components for materials integrity using equipments in the laboratory.
- 4. Identify the phases in metals and alloys and measure grain size using metallography techniques to provide interpretation of microstructures and prepare a laboratory report.
- 5. Specify metals and alloys and find equivalents using standards.

6. Modify properties of steel by modifying microstructure using different heat treatments

Unit/Module: 1	Laboratory safety:	2 hours	CO: 1
Introduction to lab	oratory and safety		
Unit/Module: 2	Mechanical Property measurement:	6hours	CO: 2
Tension, hardness	and Impact tests.		
Unit/Module: 3	Inspection of Components:	2 hours	CO: 3

Non destructive test			
Unit/Module: 4	Metallography:	6 hours	CO: 4
Study of microstructures of ferrous and non ferrous metals and alloys			

Un	it/Module: 5	Metals and alloys specification:	2 hours	CO: 5
Stu	dy and use star	dards for specification of metals and alloys.	I	1
Un	it/Module: 6	Modification of material properties:	6 hours	CO: 6
Hea	at treatment of	metals and alloys		I
		Total Lecture hours:	24 hours	
4.	-	neering, science, processing and design, Michael Ashby, Hugh leineman, 2008	Shercliff, Da	vid Cebon,
3.		terial Science and Engineering", W.D. Callister, D.G.Rethwisch		
Ref	ference Books:	·		
1.	-	Engineering materials", R.A. Higgins, ELBS, Edward Arnold,	1088	
1.	Fioperties of	Engineering materials, K.A. Higgins, ELDS, Edward Arnold,	1900.	
2.	"Material Scie	nce & Engineering." Raghavan V., Prentice Hall of India, New	Delhi. 2003	
3.	"Material selec	tion in mechanical design', Michael Ashby, Butterworth-Heine	emann, 3/e, 2	005
4			and Iones Bu	tterworth
	Heinemann.	n to properties, Applications and design, Third edition, Ashby a	ind Jones, Du	

		(An Autonomous Institute Affiliated to Savitribai Phule Pune University)		College	e of Engineering or Women
Cou	urse Code	Machining and Machine Tool Operations Lab (MMTO-L)	L	Т	Р
20N	1E303L		-	-	2
Pre	-requisite	None	Sylla	bus Ve	rsion
					V:1.1
Cou	ırse Objectives	:			
	2. To acquaint	ze with the basic concepts of machining science. with various single and multipoint cutting tools designing proces students understand the economics of machining process	ses.		
Cou	irse Outcomes:				
	tool life and 3. Apply feature	propriate single or multipoint cutting tool parameter to evaluate c surface finish for machining operation. res and applications of non-traditional machining processes. the need of automation and its use in manufacturing.	utting f	orce, p	ower,
1.		n of physical hazards, safety and precautions.			
2.	Experimental	studies on the cutting tool angle measurement.			
3.		of mechanical components using CNC machine (Lather g drawing with appropriate geometrical and dimensional tolerance included.			
4.	Composite jo	b machining involving minimum four operations, employ ecision turning, screw cutting, boring etc.	ring op	eration	is on
5.	Cutting Force	in Turning Process-an Experimental Approach by using dynamor	meters.		
		Total Lab hours: 22 hou	Irs		
Tex	t Books:				
3.	Fundamentals	of modern manufacturing, Fifth Edition, Mikell P. Groover, Wile	ey Publi	ication	
4.	Manufacturing Hall.	g, Engineering and Technology SI, Serope Kalpakjian, Steven I	R. Schn	nid, Pr	entice

Ref	Reference Books:		
1.	Fundamentals of Metal Machining and Machine Tools, Third Edition by Winston A. Knight,		
Geoffrey Boothroyd, CRC press Taylor and Francis group.			
2.	Jigs and Fixture, P.H. Joshi, Tata McGraw-Hill		
3.	Metal Cutting Principles (2nd Edition), by Milton Clayton Shaw, Oxford University Press.		

	(All Autonomous institute Armated to Savitrioar Finite Fune Onivers))		College Fr	of Engineering or Women
Course Code	Computer Aided Machine Drawing Lab (CAMD-L))	Ĺ	Т	Р
20ME305L				_	4
Pre-requisite	Engineering Graphics	Sy	llabu	s Ve	rsion
				V	1.1
Course Objectives	:	I			
 Understand Aware of dr Understand Accustomed 	with conventional representation of common features and the basics of projections and dimensioning techniques rawing the threaded fasteners and riveted joints the use of dimensional and geometrical tolerances d to the use of 3-D modeling software -D printing technology	standards			
Course Outcomes					
 Understand Apply toler Create 3-D Create man 	achine components and represent it through IS convention the conventional methods of representing threaded fasten- ances of size, forms & positions part and assembly model of mechanical system ufacturing drawing with all the details ponents using 3-D printing machine		ted joi	nts	
Unit/Module: 1	Conventional Representation	2 hours	CO:	1	
current software).	language, importance of machine drawing, drafting equ Principles of drawings: BIS conventions, ISO standards, rr, washer, knurling, array of holes, ratchet and pawl angle	IS convent			
Unit/Module: 2	Basics of Projections and dimensioning	2 hours	CO:	5	
Sectioning– Cuttin sectioning revolved Dimensioning– pr chords, arcs, angles	nsioning, relative position of views. Ig planes and section, hatching lines, half sections, aligned I, removed sections, local sections. inciple of dimensioning, dimensioning of common fea- s, countersunk, counter drilled holes, counter-bore holes, faces, spot faces, chamfers, tapered features. Addition of	atures e.g.	diame and co	eter, ounte	radii ersunk

Threaded Fasteners- Different screw threads, metric and BSW threads, Square thread and n threads. Nut bolts, Washers, Setscrew, Locknuts and foundation bolts. Locking devices- lock nut-castle nut-Studs-Tap bolt-Machine screws washers- Keys-sunk head key. (For a given standard diameter with proportions). Riveted joints- Riveted joints- Forms and proportions of river heads, Different views of different types of rive and Butt joints. Unit/Module: 4 Limit, fits, tolerances and Geometrical dimensioning and tolerancing 4 hours CO: 4 Limits, fits and tolerances- tolerancing and limit systems, symbols for tolerances, deviation method of tolerancing, tolerance grade, fits- system of fits, classification of fits, selection methods of indicating fits on drawing. Geometrical tolerance- Need, geometrical characteristics of symbols, characteristics (such straightness, flatness, circularity, cylindricity, etc) its symbols and interpretations. Unit/Module: 5 Part Modelling 12 hours CO: 4 Parametric solid modeling - fundamentals, transform the parametric 2-D sketch into a 3 feature operations, Free form feature modeling, design by features, feature recognition. Unit/Module: 6 Assembly Modelling 14 hours CO: 4 Defining relationship between various parts of machine, creation of constraints, and gene exploded view. Animation of the motions of assembly. 10 hours CO: 4 Generation of manufacturing drawing from parts and ass	For Women					
threads. Nut bolts, Washers, Setscrew, Locknuts and foundation bolts. Locking devices- lock nut-castle nut-Studs-Tap bolt-Machine screws washers- Keys-sunk head key. (For a given standard diameter with proportions). Riveted joints- Forms and proportions of river heads, Different views of different types of rive and Butt joints. Unit/Module: 4 Limit, fits, tolerances and Geometrical dimensioning and tolerancing 4 hours CO: 3 Limits, fits and tolerances- tolerancing and limit systems, symbols for tolerances, deviation method of tolerancing, tolerance grade, fits- system of fits, classification of fits, selection methods of indicating fits on drawing. Geometrical tolerance- Need, geometrical characteristics of symbols, characteristics (such straightness, flatness, circularity, cylindricity, etc) its symbols and interpretations. Voi 4 Unit/Module: 5 Part Modelling - fundamentals, transform the parametric 2-D sketch into a 3 CO: 4 Parametric solid modeling - fundamentals, transform the parametric 2-D sketch into a 3 CO: 4 Defining relationship between various parts of machine, creation of constraints, and gene exploded view. Animation of the motions of assembly. Ioh hours CO: 4 Generation of manufacturing drawing from parts and assembly 3-D model with representation cappropriate dimensioning and tolerancing. Ioh hours CO: 4 Init/Module: 8 Introduction to 3-D printing 6 hours CO: 6	2 hours CO: 2					
head key. (For a given standard diameter with proportions).Riveted jointsForms and proportions of river heads, Different views of different types of rive and Butt joints.Unit/Module: 4Limit, fits, tolerances and Geometrical dimensioning and tolerancing4 hoursCO: 3Limits, fits and tolerancestolerances and Geometrical dimensioning and tolerancing4 hoursCO: 3Limits, fits and tolerancestolerancing and limit systems, symbols for tolerances, deviation method of tolerance, tolerance grade, fits- system of fits, classification of fits, selection methods of indicating fits on drawing.12 hoursCO: 4Geometrical toleranceNeed, geometrical characteristics of symbols, characteristics straightness, flatness, circularity, cylindricity, etc) its symbols and interpretations.CO: 4Unit/Module: 5Part Modelling12 hoursCO: 4Parametric solid modeling - fundamentals, transform the parametric 2-D sketch into a 3feature operations, Free form feature modeling, design by features, feature recognition.CO: 4Unit/Module: 6Assembly Modelling14 hoursCO: 4Defining relationship between various parts of machine, creation of constraints, and gene exploded view. Animation of the motions of assembly.10 hoursCO: 4Unit/Module: 7Production Drawing10 hoursCO: 4Generation of manufacturing drawing from parts and assembly 3-D model with representation c appropriate dimensioning and tolerancing.6 hoursCO: 6Introduction to use of 3-D printing technology for manufacturing of a component.6 hoursCO: 6						
and Butt joints.Limit, fits, tolerances and Geometrical dimensioning and tolerancing4 hoursCO: 5Limits, fits and tolerances- tolerancing and limit systems, symbols for tolerances, deviation method of tolerancing, tolerance grade, fits- system of fits, classification of fits, selection methods of indicating fits on drawing.Geometrical tolerance- Need, geometrical characteristics of symbols, characteristics straightness, flatness, circularity, cylindricity, etc) its symbols and interpretations.CO: 6Unit/Module: 5Part Modelling12 hoursCO: 6Parametric solid modeling - fundamentals, transform the parametric 2-D sketch into a 32feature operations, Free form feature modeling, design by features, feature recognition.CO: 6Unit/Module: 6Assembly Modelling14 hoursCO: 6Defining relationship between various parts of machine, creation of constraints, and gene exploded view. Animation of the motions of assembly.10 hoursCO: 6Unit/Module: 7Production Drawing10 hoursCO: 6Generation of manufacturing drawing from parts and assembly 3-D model with representation c appropriate dimensioning and tolerancing.CO: 6Unit/Module: 8Introduction to 3-D printing6 hoursCO: 6Introduction to use of 3-D printing technology for manufacturing of a component.CO: 6	Locking devices – lock nut-castle nut-Studs-Tap bolt-Machine screws washers- Keys-sunk key-Gib head key. (For a given standard diameter with proportions).					
dimensioning and tolerancingLimits, fits and tolerances- tolerancing and limit systems, symbols for tolerances, deviation method of tolerancing, tolerance grade, fits- system of fits, classification of fits, selection methods of indicating fits on drawing.Geometrical tolerance- Need, geometrical characteristics of symbols, characteristics straightness, flatness, circularity, cylindricity, etc) its symbols and interpretations.(such (such total)Unit/Module: 5Part Modelling12 hoursCO: 4 CO: 4Parametric solid modeling - fundamentals, transform the parametric 2-D sketch into a 2 feature operations, Free form feature modeling, design by features, feature recognition.14 hoursCO: 4 CO: 4Defining relationship between various parts of machine, creation of constraints, and gene exploded view. Animation of the motions of assembly.10 hoursCO: 4 CO: 4 CO: 4 CO: 4 CO: 4 CO: 4 CO: 4 CO: 4 Defining relationship between various parts and assembly 3-D model with representation of appropriate dimensioning and tolerancing.CO: 4 CO: 4 	Riveted joints- Forms and proportions of river heads, Different views of different types of riveted Lap					
method of tolerancing, tolerance grade, fits- system of fits, classification of fits, selection methods of indicating fits on drawing.Geometrical tolerance- Need, geometrical characteristics of symbols, characteristics straightness, flatness, circularity, cylindricity, etc) its symbols and interpretations.(suchUnit/Module: 5Part Modelling12 hoursCO: 4Parametric solid modeling - fundamentals, transform the parametric 2-D sketch into a 3 feature operations, Free form feature modeling, design by features, feature recognition.CO: 4Unit/Module: 6Assembly Modelling14 hoursCO: 4Defining relationship between various parts of machine, creation of constraints, and gene exploded view. Animation of the motions of assembly.10 hoursCO: 4Unit/Module: 7Production Drawing10 hoursCO: 4Generation of manufacturing drawing from parts and assembly 3-D model with representation or appropriate dimensioning and tolerancing.6 hoursCO: 4Unit/Module: 8Introduction to 3-D printing6 hoursCO: 4	4 hours CO: 3					
straightness, flatness, circularity, cylindricity, etc) its symbols and interpretations.Unit/Module: 5Part Modelling12 hoursCO: 4Parametric solid modeling - fundamentals, transform the parametric 2-D sketch into a 3feature operations, Free form feature modeling, design by features, feature recognition.CO: 4Unit/Module: 6Assembly Modelling14 hoursCO: 4Defining relationship between various parts of machine, creation of constraints, and gene exploded view. Animation of the motions of assembly.10 hoursCO: 4Unit/Module: 7Production Drawing10 hoursCO: 4Generation of manufacturing drawing from parts and assembly 3-D model with representation of appropriate dimensioning and tolerancing.6 hoursCO: 4Unit/Module: 8Introduction to 3-D printing6 hoursCO: 4						
Parametric solid modeling - fundamentals, transform the parametric 2-D sketch into a 2 feature operations, Free form feature modeling, design by features, feature recognition.Unit/Module: 6Assembly Modelling14 hoursCO: 4Defining relationship between various parts of machine, creation of constraints, and gene exploded view. Animation of the motions of assembly.10 hoursCO: 4Unit/Module: 7Production Drawing10 hoursCO: 4Generation of manufacturing drawing from parts and assembly 3-D model with representation of appropriate dimensioning and tolerancing.6 hoursCO: 4Unit/Module: 8Introduction to 3-D printing6 hoursCO: 4						
feature operations, Free form feature modeling, design by features, feature recognition.Unit/Module: 6Assembly Modelling14 hoursCO: 4Defining relationship between various parts of machine, creation of constraints, and gene exploded view. Animation of the motions of assembly.10 hoursCO: 4Unit/Module: 7Production Drawing10 hoursCO: 4Generation of manufacturing drawing from parts and assembly 3-D model with representation of appropriate dimensioning and tolerancing.6 hoursCO: 4Unit/Module: 8Introduction to 3-D printing6 hoursCO: 4	12 hours CO: 4					
Defining relationship between various parts of machine, creation of constraints, and gene exploded view. Animation of the motions of assembly.Unit/Module: 7Production Drawing10 hoursCO: 4Generation of manufacturing drawing from parts and assembly 3-D model with representation of appropriate dimensioning and tolerancing.Introduction to 3-D printing6 hoursCO: 4Introduction to use of 3-D printing technology for manufacturing of a component.CO: 4						
exploded view. Animation of the motions of assembly.Unit/Module: 7Production Drawing10 hoursCO: 4Generation of manufacturing drawing from parts and assembly 3-D model with representation of appropriate dimensioning and tolerancing.Introduction to 3-D printing6 hoursCO: 6Unit/Module: 8Introduction to 3-D printing6 hoursCO: 6Introduction to use of 3-D printing technology for manufacturing of a component.	14 hours CO: 4					
Generation of manufacturing drawing from parts and assembly 3-D model with representation of appropriate dimensioning and tolerancing. Unit/Module: 8 Introduction to 3-D printing 6 hours CO: 0 Introduction to use of 3-D printing technology for manufacturing of a component.	of constraints, and generation of					
appropriate dimensioning and tolerancing.6 hoursCO: 0Unit/Module: 8Introduction to 3-D printing6 hoursCO: 0Introduction to use of 3-D printing technology for manufacturing of a component.	10 hours CO: 5					
Introduction to use of 3-D printing technology for manufacturing of a component.	nodel with representation of					
	6 hours CO: 6					
Total Lab hours: 52 hours	component.					
	iours: 52 hours					
Lab Work						
1. Assignment on drawing IS conventions, threaded fasteners and riveted joints using the projections and dimensioning rules. (to be completed manually)						
2. Assignment on solid modeling of a machine component. (minimum 10 machine componer						
3. Assignment on parametric solid modeling of a machine component using various comm features of the software. (minimum 2 machine components)						
4. Assignment on assembly modeling using proper mating conditions and generation of view. (minimum 5 assemblies)						
5. Assignment on creating production drawing with the limit, fits and tolerance representation	nd tolerance representation.					

Text Books:

1. N. D. Bhat, "Machine Drawing", Charotor publishing house, Bombay.

2. R. K. Dhavan, "Machine Drawing", S. Chand and Company.

3. N. D. Junnarkar, "Machine Drawing", Pearson Education.

4. IS: SP46- Engineering drawing practice for schools and colleges, B.I.S. Publications.

5. IS: 696- Code of practice for general engineering drawing B.I.S. Publications.

6. IS: 2709- Guide for selection of fits, B.I.S. Publications.

7. IS: 919- Recommendation for limits and fits for Engineering, B.I.S. Publications.

8. IS: 8000- Part I, II, III, IV, geometrical tolerancing of technical drawing – B.I.S. Publications

Reference Books:

 P. S. Gill, "A textbook of Machine Drawing", revised edition, K Kataria and Sons, New Delhi, 2008, ISBN 81-85749-79-5.

