

Autonomous Program Structure of

Third and Final Year B. Tech. Academic Year: 2022-2023 Onwards

		Teaching Scheme Hours /Week		Examination Scheme						
Course Code	Course Title	Lecture	Tutorial	Practical	In Sem	End Sem	Oral	Practical	Total Marks	Credit
200EHS 501	Open HS Elective –I	3	0	0	50	50	0	0	100	3
200E 601	Open Elective-II	3	0	0	50	50	0	0	100	3
200E 801	Open Elective-III	3	0	0	50	50	0	0	100	3
200E 802	Open Elective-IV*	3	0	0	50	50	0	0	100	3

* Inter-disciplinary Course

200EIIS 501 Open Elective I (Humanities)								
Course Code	Course Title							
200EHS501A	Entrepreneurship Development							
200EHS501B	Intellectual Property Rights							
200EHS501C	Introduction to Digital Marketing							
200EHS501D	Law for Engineers							
200EHS501E	Organizational Behaviour							
200EHS501F	Project Management							
	Course Code 200EHS501A 200EHS501B 200EHS501C 200EHS501D 200EHS501E							

200EHS 501 Open Elective I (Humanities)

MKSSS's Cummins College of Engineering for Women, Pune (An Autonomous Institute Affiliated to SavitribaiPhule Pune University)

20OE601 Open Elective-II			Eligible Departments					
Sr. No.	Course Code	Course Title	EnTC	Comp	IT	Mech	Instru	
1	200E601A	Automation and Control Engineering	Y	Y	Y	Y	Y	
2	200E601B	Automotive Electronics	Y	Y	Y	Y	Y	
3	200E601C	Avionics	Y	Y	Y	Y	Y	
4	200E601D	Bioinformatics	Y	Y	Y	N	Y	
5	200E601E	Computer Vision	Y	Y	Y	Y	Y	
6	200E601F	Design Thinking	Y	Y	Y	Y	Y	
7	200E601G	e-Business	Y	Y	Y	Y	Y	
8	200E601H	Electric Vehicles	Y	Y	Y	Y	Y	
9	200E601I	Gamification	Y	Y	Y	Y	Y	
10	200E601J	Geographical Information Systems	Y	Y	Y	Y	Y	
11	200E601K	Multimedia Systems	Y	Y	Y	N	Y	

200E601 Open Elective-II

200E801 Open Elective-III			Eligible Departments					
Sr. No.	Course Code	Course Title	EnTC	Comp	IT	Mech	Instru	
1	200E801A	Big Data and Analytics	Y	Y	Y	Y	Y	
2	200E801B	Cyber Physical Systems	Y	Y	Y	Ν	Y	
3	200E801C	Digital Control	Y	N	Ν	Y	Y	
4	200E801D	Industrial Engineering and Management	Y	Y	Y	Y	Y	
5	200E801E	Introduction to Cyber-crime and Forensics	Y	Y	Y	Y	Y	
6	200E801F	Instrumentation in Food and Agriculture	Y	Y	Y	Y	Y	
7	200E801G	Medical IoT	Y	Y	Y	N	Y	
8	200E801H	Quantum Computing	Y	Y	Y	N	Y	
9	200E801I	Renewable Energy Sources	Y	Y	Y	Y	Y	
10	200E801J	Soft Computing	Y	Y	Y	Y	Y	
11	200E801K	Software Testing and Quality Assurance	Y	Y	Y	Y	Y	

200E801 Open Elective-III

200E802 Open Elective-IV

20OE802 Open Elective-IV			Eligible Departments					
Sr. No.	Course Code	Course Title	EnTC	Comp	IT	Mech	Instru	
1	200E802A	Applied statistics with R Programming	Y	Ν	Ν	Y	Y	
2	200E802B	Automobile Engineering	Y	Y	Y	Ν	Y	
3	200E802C	Autonomous Robots	N	Y	Y	Y	N	
4	200E802D	Building Automation and Energy Audit	Y	Y	Y	Y	Ν	
5	200E802E	Data Analysis and Visualization	Y	N	Ν	Y	Y	
6	200E802F	Data Science using Python	Y	N	Ν	Y	Y	
7	200E802G	Industrial Drives and Control	Y	Y	Y	Y	Ν	
8	200E802H	Smart Sensors and Structures	Y	Y	Y	Y	Ν	
9	200E802I	Wireless Networks	N	Y	Y	Ν	Y	

200EHS501A ENTREPRENEURSHIP DEVELOPMENT

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme: ISE: 50 Marks ESE: 50 Marks Credits: 3

Prerequisite: NA

Course Objectives:

- 1. Understand the fit between individual entrepreneurial ambitions
- 2. Select a problem worth solving
- 3. Identify customers
- 4. Develop a solution for your customers' problems and problem solution
- 5. Build and demonstrate an MVP (Minimum Viable product)
- 6. Structure a business model around the problem, customer, and solution and present Business Model Canvas

Course Outcomes:

After completion of the course, students will be able to

- CO1 Describe what it takes to be an entrepreneur
- CO2 Analyze business opportunities and the basics to create, launch and manage new businesses
- CO3 Develop Business Model for their Idea/Problem
- CO4 Create MVP (Minimum Viable Product)

Module 1: Introduction

Discover yourself, Principles of Effectuation, Identify your entrepreneurial style

Module 2:Problem Identification and Idea generation(04)

Identify Problems worth Solving, Introduction to Design Thinking, Generate ideas that are potential solutions to the problem identified

Module 3:Customer Segmentation(07)

Customer identification, Market, Creative solution, Unique Value proposition

Module 4: Business Model Canvas

Types of business models, Business Plan documentation, Risk identification

(04)

(03)

Identification	Validation of MVP, Solution development, Building products/services, Build-m development, Market fit of solution	(09) easure-
	Money ms, Pricing and cost, Venture financing, Investor expectations	(05)
	Team building ship, role of good team, Collaboration tools and techniques	(03)
	Marketing and sales Thannels and strategies, Sales planning	(03)
	Support gement, Planning and tracking, Business Regulation	(04)
Technol	contents available at: https://staging.learnwise.org/ - Through a Cloud ogy Platform – WF Learn Wise Platform cuments can be downloaded from the website for the distribution to studer	nts.

Sample References:

- 1. Effectuation: https://necrophone.com/2014/01/20/effectuation-the-best-theory-ofentrepreneurship-you-actually-follow-whethe
- Value Proposition: https://www.youtube.com/watch?
 v=jZN6CUieuOQ&list=PLw540Wq5kay866m6A6xI7KOwE_Ah7is4m
- 3. The Lean BMC: https://www.youtube.com/watch?v=FjB_e7UO1hc
- 4. Define your MVP: https://startups.fb.com/en-in/categories/development/
- 5. Designing Experiments: https://www.youtube.com/watch?v=WiMZWCg1Hu8&t=111s
- 6. Beating the Competition: https://www.youtube.com/watch?v=46uP6vOj5G
- 7. Google : Think branding: https://www.youtube.com/watch?v=1l2CUjkg0ug

200EHS501B Intellectual Property Rights

Teaching Scheme Lectures: 3 Hours / Week

Examination scheme: ISE: 50 Marks ESE: 50 Marks Credits: 3

Prerequisite: No pre-requisite

Course Objectives:

To facilitate learners

to,

- 1 Overview of Intellectual Properties (IP) regime in India and International arrangements
- 2 Introduce the types of IP as Patents, Copyrights, Trade Secrets etc.
- 3 Understand the process and steps involved in filing Intellectual Properties
- 4 Understand intricacies involved in drafting patent applications

Course Outcomes:

After completion of the course, students will be able to

- CO 1 Demonstrate the concepts of Intellectual Property Rights, patents and other forms of IP
- CO2 Apply appropriate type of IP for the Intellectual property
- CO3 Analyze the patentability of inventive step by searching patents
- CO4 Construct patent drafts for given Patent specification
- CO5 Understand the advances in patent law, in national and international scenario

Unit 1: Introduction

Intellectual Property (IP) Vs. Physical property, History of IP in India, Importance of IP, Patentable inventions / art, types of IPR-Patents, Copyright, Industrial Design, Trade Marks etc., Basic principles of IPR, Economic Importance of Intellectual Property Rights, IPR-ownership, morality, public order, traditional knowledge

Unit II: Patents

Introduction to Patents, Patentable Inventions as per the Indian Patent Act, Patent searching, types of Patent applications, Procedure for filing application (National and International), Patents offices, Register of Patents, Rights and obligations of patentee, Term of patent, Patent of Addition

Unit III: Drafting of patent applications

Fundamentals of drafting, structure of the patent specification-Field of invention, prior art, patent classifiations, technical advance, Invention Disclosure Form, problem solution statement, claims, preamble, body, summary

(06)

(08)

(08)

Unit IV: Transfer and Infringement of Patent Rights

Working of patents, compulsory licensing, Revocation of patents, Transfer of Patent Rights-Assignment, License; Concept of infringement, Infringement of Patents Rights, Infringement of Patents rights

Unit V: Introduction to other types of IPs

Copyright, Trade Marks, Geographical Indications, Industrial Designs, Trade Secrets, Layout designs of Integrated Circuits : Introduction, Work protected by, ownership and infringement, Application process

Unit VI : Advances in IPR

International Patenting, Patent Co-operation Treaty (PCT), Commercialization of Patents, Advances in IPR

Text Books:

- 1 Niraja Pandey, Khushdeep Dharni, "Intellectual Property Rights", PHI
- 2 N. S. Rathore, "Intellectual Propoerty Rights: Drafting,Interpretation of Patents Specification and Claims", New India Publishing Agency

Reference Books:

- 1 Venkataraman M., "An introduction to Intellectual property Rights", Venkataraman M.
- 2 Mishra, "An introduction to Intellectual property Rights", Central Law Publications
- 3 R Anita, V. Bhanoji Rao, "Intellectual property Rights, A Primer", Eastern book Company
- 4 R Puri, "Practical approach to intellectual propert Rights"
- 5 P Ganguly, "IPR unlisting the knowlege economy"

Online Resources:

- 1 NPTEL course material on "Patent Drafting for Biginners" https://onlinecourses.nptel.ac.in/noc18 hs17/preview
- 2 IP India : <u>www.ipindia.nic.in/</u>
- 3 WIPO, World Intellectual property Organization <u>www.wipo.int/</u>
- 4 Intellectual Property (IP) Policy | USPTO <u>https://www.uspto.gov/intellectualproperty-</u>ippolicy

(06)

(08)

(06)

MKSSS's Cummins College of Engineering for Women, Pune (An Autonomous Institute Affiliated to SavitribaiPhule Pune University)

200EHS501C Introduction to Digital Marketing

Teaching Scheme Lectures: 3

Examination scheme: In Semester: 50 marks End Semester: 50 marks Credits: 3

Prerequisite:

Course Objectives:

- 1 Interpret Digital marketing campaign strategy
- 2 Explain social media and its role in marketing strategy through various channels which it operates
- 3 Explore search engine optimization
- 4 Explain concepts related to mobile marketing

Course Outcomes:

After successfully completing the course students will be able to

- Explore methods to illustrate website and webhosting concepts 1
- 2 Develop a marketing plan for product or service by integrating social media platforms to generate leads
- Examine mobile marketing strategies to connect with customers 3
- Demonstrate importance of organic ranking through SEO 4

Unit I: **Overview of Digital Marketing**

Introduction to Digital Marketing, Understand customer needs, Benefits of Digital marketing, Digital marketing platforms and Strategies, Comparing Digital with Traditional Marketing, Latest Digital marketing trends, What is Domain Name, Types of Domain, Web Hosting Concepts, Domain/Hosting Business, introduction to wordpress

Unit II: **Digital Advertising with Google AdWords**

Introduction to Paid Marketing, Google Account setup, Account Structure, Campaigns settings, AdGroup setup, Keyword Match Types, Keyword Research Tools, Understanding Ad Auction, What is Quality Score, My Client Centre, Google AdWords Editor Tool, Interface Tour and BillingSettings

Unit III: **Social Media Marketing**

Introduction to Social Media, Integrating Social Media with Other Disciplines, Facebook Marketing, Facebook account setup, Personal account properties, Facebook marketing strategy, Facebook business page setup, Types of Business pages, Cover photo designing, Page management options, twitter and Instagram marketing

(08)

(08)

(08)

Unit IV: **Mobile Marketing**

Introduction to Mobile Marketing and m-commerce, create mobile app,case study:market potential of mobile commerce.

Unit V: **Search Engine Optimization**

Introduction to Search Engines, On-Page Optimization, Off-Site Optimization, Social media monitoring Tool

Case study and Future Trends in Digital marketing Unit VI :

Digital marketing Scenario in india and world, Digital Strategies Influence r marketing, AI in Digital Marketing

Text Books:

- 1 Seema Gupta, "Digital Marketing", McGraw-Hill Publication, (1st Edition), (2018).
- 2 Benjamin Mangold, "Google Adwords and Google Analytics", loves data, (1st Edition), (2018).
- 3 Richard stokes, "Pay per click", Entrepreneur Press, (2nd Edition), (2014).
- 4 Suraj Bandyopadhyay "Models for Social Networks with Statistical Applications", Sage *Publications*, (1st Edition), (2011).

Reference Books:

- 1 Ian Dodson, "The Art of Digital Marketing", Wiley, (1st Edition), (2016).
- 2 Sira. R Bowden, "Beginners Guide Digital Marketing Part 2: Mobile Marketing", BookRix, (1st Edition), (2016).

Online Resources:

NPTEL:Marketing Management: https://nptel.ac.in/courses/110/104/110104070/

websites:

- 1 https://www.searchenginejournal.com/seo-guide/panda-penguin-hummingbird/
- 2 https://www.lynda.com/Analytics-tutorials/Online-Marketing-Fundamentals/188429-2.html

(06)

(06)

(06)

20HS501D - LAW FOR ENGINEERS

Teaching Scheme Lectures: 3 Hours / Week Examination scheme: ISE: 50 Marks ESE: 50 Marks Credits: 3

Course Objectives:

- 1 To acquaint the students with legacies of constitutional development in India and help them to understand the most diversified legal document of India and philosophy behind it
- 2 To make students aware of the theoretical and functional aspects of the Indian Parliamentary System
- 3 To channelize students' thinking towards basic understanding of the legal concepts and its implications for engineers
- 4 To acquaint students with latest intellectual property rights and innovation environment with related regulatory framework
- 5 To make students learn about role of engineering in business organizations and e- governance

Course Outcomes:

After completion of the course, students will be able to

- CO 1 Identify and explore the basic features and modalities about Indian constitution
- CO2 Differentiate and relate the functioning of Indian parliamentary system at the center and state level
- CO3 Differentiate different aspects of Indian Legal System and its related bodies
- CO4 Correlate and apply different laws and regulations related to engineering practices
- CO5 Correlate role of engineers with different organizations and governance models

Unit 1: Legal Structure and Constitutional Law

Legal Structure : Court System in India (District court, District Consumer court, Tribunals, High courts, Supreme Court), Arbitration, Constitutional Law: The Preamble, Fundamental Rights, Fundamental Duties, Emergency provisions: Kinds, Legal requirements and Legal effects.

Unit II: RTI and Contract Law

Right to Information Act, 2005: Evolution and concept, Practice and procedures, Contract Law : General Principles of Contract under Indian Contract Act, Kinds of government contracts and dispute settlement, Standard form contracts : Nature, Advantages, Unilateral character, Principles of protection against possibility of exploitation, Clash between two standard forms contract.

(06)

(06)

Unit III: Sale of Goods Law and Consumer Protection Act

Sale of Goods Law : Goods- movable property, Warranty, Guarantee, Consumer Protection Act : Consumer Rights and Legislative framework on Consumer protection.

Unit IV: Environment Law and Labour Laws

Environment Law: Laws relating to industrial pollution, environmental protection, Labour Laws: Industrial Disputes Act, Collective bargaining; Industrial Employment, Health and safety at work, Accidents, PoSH Act 2013 : Laws relating to Equality and Empowerment of Women, The Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013

Unit V: Patent and Cyber Law

Law relating to Patents : Patents Act, 1970, Law relating to Intellectual property, Law relating to Copyright, Law relating to Trademarks, Cyber law Act 2000 : The Information Technology Act, 2000 (also known as ITA-2000, or the IT Act) - dealing with cybercrime and electronic commerce.

Unit VI: Corporate Law and Land Law

Corporate Law: Meaning of corporation; Law relating to companies, public and private (Companies Act, 1956) general provisions, Corporate liability, civil and criminal, Code of Business Conduct (COBC) provides the ethical guidelines and expectations for conducting business, Land Law: Transfer of Property Act, Land disputes.

Text Books:

- 1 D.D. Basu, "Shorter Constitution of India", Prentice Hall of India, December 2017
- 2 S.K. Awasthi & R.P. Kataria, "Law relating to Protection of Human Rights", Orient Publishing, 2000
- 3 Wadhera, "Intellectual Property Rights", Universal Law Publishing Co, 5th edition
- 4 O.P. Malhotra, "Law of Industrial Disputes", N.M. Tripathi Publishers, 1968

Reference Books:

- 1 M.P. Jain, "Indian Constitutional Law", Wadhwa & Co., 2018
- 2 S.K. Kapur, "**Human Rights under International Law and Indian Law''**, Central Law Agency, 7th edition
- 3 Avtarsingh, "Law of Contract", Eastern Book Co, 2020
- 4 T. Ramappa, "Intellectual Property Rights Law in India", Asia Law House, 2016

Online Resources:

1 Companies Act, 2013 Key highlights and analysis by PWC.

https://www.pwc.in/assets/pdfs/publications/2013/companies-act-2013-key-highlightsandanalysis.pdf

(08)

(08)

(06)

(08)

200EHS501E ORGANIZATIONAL BEHAVIOR

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Course Objectives:

To facilitate the learner to

- 1 Develop familiarity with the concepts related to organizational behavior.
- 2 Gain knowledge about personality traits and individual behavior.
- 3 Study group dynamics.
- 4 Get exposure to the recent trends in Organizational behavior.

Course Outcomes:

After completion of the course, students will be able to

- 1 Explain concepts of organizational behavior, its importance and culture.
- 2 Outline meaning of personality and how individual behavior impact organization.
- 3 Relate with ideas of group dynamics and influence of groups in work place.
- 4 Recall latest trends in Organizational behavior.

Unit 1: Introduction

Management and Organizational Behavior (OB), Organizational behavior in historical perspective, Developing an OB model, Challenges and Opportunities for OB, Foundation of individual behavior.

Unit II: Individual

Personality, personality frameworks, big five model, perception, individual decision making, attitudes, components of attitudes, attitudes and behavior, Job attitudes, values

Unit III: Diversity and Ethics

Environmental context : diversity and ethics, Communication, Case studies

Unit IV: Trends

International organizational behavior, emotional intelligence, strategic organizational behavior, Intra-preneurship, flat organization, Gig economy

Unit V: **Group Dynamics**

Foundation of group behavior, stages of group development, group decision making, team building, organizational conflicts and negotiation, power and politics, employee engagement

(08)

(07)

(06)

(07)

(08)

Unit VI: Dynamic Environment and Culture

(06)

Information technology and globalization, Human resource policies and practices, OKR (Objective and Key results)framework, Learning

Text Books:

- 1 Stephen P. Robbins, Timothi A.Judge, '**Organisational Behavior**', 18th Global Edition, Pearson Education(2017),ISBN: 978-0-13-410398-3
- 2 Dr. S. S. Khanka, **'Organisational Behaviour (Text and Cases)',** S.Chand & Company Pvt.Ltd. (2018), ISBN 978-81-219-2014-8
- 3 Fred Luthans, **'Organizational Behavior '**, 12th Edition, McGraw Hill Publication (2017), ISBN-978-1-25-909743-0

Reference Books:

- Moorhead, Griffin, 'Introduction to Organizational Behavior', India Edition (2010), Cengage Learning, ISBN: 978-81-315-1242-5
- 2 P. Subba Rao, 'Organisational Behaviour (Text, Cases and Games)' Himalaya Publishing House (2017), ISBN 978-93-5024-673-3
- 3 K. Aswathappa, 'Organisational Behavior : Text, Cases & Games', 12th Revised Edition,Himalaya Publishing House(2017), ISBN 978-93-5051-588-4

Online Resources:

1 NPTEL on "Organizational Behavior": https://nptel.ac.in/downloads/110105034/#

200EHS501F PROJECT MANAGEMENT

Teaching Scheme

Lectures: 3 Hours / Week Tutorial : 1 Hour/ Week Examination scheme:

ISE: 50 Marks ESE: 50 Marks Credits: 3

Course Objectives:

- 1 To introduce concepts of Project management
- 2 To discuss life cycle of real life projects and activities involved in projects
- 3 To understand risks involved in a project

Course Outcomes:

After completion of the course, students will be able to

- CO 1 Identify scope of a project and lifecycle of a project
- CO2 Develop a plan for a project
- CO3 Determine schedule of a project
- CO4 Assess risks involved in a project
- CO5 Estimate budget of a project
- CO6 Adapt project management tools and techniques

Unit 1: Introduction

Definition of project, Objectives of Project Management, Classification of projects, Life cycle phases of the project. Project management and Project manager, Role and responsibilities of the project manager, Stakeholder Identification, team building

Unit II: Project Planning

Project Planning: Introduction and basic requirements, establishing project objectives, Statement of work (SOW), project specifications, Work Breakdown structure (WBS).

Unit III: Project Scheduling

Project scheduling: Introduction and basic requirements, milestone scheduling, Network Scheduling techniques: PERT(Program Evaluation Review Technique), CPM(Critical Path Method), GANNT chart, Schedule control

Unit IV: Risk Assessment and Management:

Risk Management Planning, Risk identification, Qualitative Risk analysis, Quantitative Risk analysis, Risk response planning, Risk monitoring and controlling

(07)

(07)

(07)

(07)

Unit V: Project Cost Estimation

Resource Planning, Cost Estimating, Cost Budgeting, Budget control, Earned Value Analysis, Project Audits, Project closure

Unit VI: Tools and Techniques for Project Management

(07)

(07)

Project Management tools, International Project Management, Collaborative development, Planning Quality Management, Quality metrics, Techniques for Quality Control (statistical control, six sigma, ISO)

Text Books:

- 1 1. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), PMI.
- 2 PROJECT MANAGEMENT A Managerial Approach, Jack R. Meredith, John Wiley & Sons

Reference Books:

- 1 Morris, P. W. G., Pinto, J. K., The Wiley Guide to Managing Projects, 2004, John Wiley & Sons
- 2 Phillips, J.PMP Project Management Professional Study Guide, McGraw-Hill, 2003.

Online Resources:

- 1 http://www.pmi.org
- 2 https://www.ipma.world

CO: 3

MKSSS's Cummins College of Engineering for Women, Pune (An Autonomous Institute Affiliated to SavitribaiPhule Pune University)

200EHS601A Automation and Control Engineering [ACE – OE-II]

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme: ISE: 50 Marks ESE: 50 Marks Credits: 3

Pre-requisite: Engineering Mechanics, Fluid Mechanics, Basic Mathematics **Course Objectives:**

Course prepares students to

- 1 To familiarize with the basic concepts of Industrial Automation
- 2 To acquaint with the concept of low cost automation with Hydraulic and Pneumatic systems.
- 3 To acquaint with the basic concepts of the Industrial Fluid Power and Factory Automation.
- 4 To familiarize with the working of different types of controllers and control actions.

Course Outcomes:

Students will be able to

- 1 Identify the elements of automation systems, levels of automation and types of automation.
- 2 Describe assembly line automation, Transfer system, and its components.
- 3 Analyze different hydraulics and pneumatics circuits for Industrial applications.
- 4 Study of control system and its types.
- 5 Develop the basic ladder logic using PLC for different industrial applications.

Unit/Module: 1 Introduction to Automation 4 hours CO: 1

Definition, Automation in Production system, Need of automation, Societal issues of automation, Automation strategies, levels of automation, types of automation, Architecture of an Industrial automation system.

Unit/Module: 2 Hydraulics and Pneumatics devices 6 hours **CO: 2**

Different types of Hydraulics and Pneumatics devices,

DCV: All possible configuration and valve designation for Single acting and double acting actuators FCV, PCV, Actuator and auxiliary elements in hydraulic and pneumatic system, Industrial applications and Case studies.

Unit/Module: 3 Hydraulic Systems

ISO symbols for Hydraulics, Basics of Hydraulic system, Hydraulic Power Pack, Actuators, Circuits using Sequencing and cascading method, Design of Electro-Hydraulic circuits, Case studies and Industrial Applications. Digital and Servo hydraulic control circuits.

8 hours

Unit/Module: 4 Pneumatic Systems

ISO symbols for Pneumatics, Basic circuits using linear and rotary pneumatic actuators, Circuits using Cascade method and shift register method, Design of Electro-pneumatic circuits using solenoids to operate single acting and double acting actuators.

Unit/Module: 5 Assembly line Automation and control 6 hours CO: 5

Automated Material handling systems, automated inspection, transfer lines, part placing and part escapement, AGV's and conveyors

Control System: Open loop, Close Loop, Mathematical Modelling of basic systems :Hydraulic, Pneumatic, Thermal and Fluid systems, Case Studies

Unit/Module: 6 Controllers

Programmable Logic Controller: Basics of PLC, PLC operating cycle, Architecture of PLC, PLC Ladder Programming, Logic Gates, Timers, Counters, Concept of Latching and Interlocking, Selection of PLC for different industrial applications.

Control Actions: On-Off controller, Proportional controller (P), Integral Controller(I), Derivative Controller(D), Compound Controller actions: PI, PD, PID

Total Lecture hours: 36 hours

Text Books:

- 1 Anthony Esposito, "Fluid Power with Applications", 7th Edition, 2008, PHI Publication.
- 2 M.P.Groover, "Automation, Production System and Computer Aided Manufacturing", 3rd Edition, PHI Publication, New Delhi.
- 3 M.P.Groover, "Industrial Robotics: Technology, Programming and Applications
- 4 Ogata, "Modern Control Engineering"
- 5 Nagrath and Gopal "Mathematical Modelling, Simulation and Analysis", MGH Pub
- 6 Gary Dunning, "Introduction to Programmable Logic controller", Thomas Learning, edition, 2001.
- 7 Handbook of design, manufacturing and Automation: R.C. Dorf, John Wiley and Sons.

Reference Books:

- 1 C D Johnson, "Process Control Instrumentation Technology", Prentice Hall of India, New Delhi. ISBN: 8120309871
- 2 Vickers "Industrial Hydraulics" Manual, 3rd Edition, Vickers Inc.

CO: 4

6 hours

CO: 6 6 hours

200E601B AUTOMOTIVE ELECTRONICS

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisite: 20ES01: Basic Electrical and Electronics Engineering

Course Objectives:

- 1 To explain the operation of basic automotive System components
- 2 To discuss sensors and actuators in automotive applications
- 3 To describe the system view of automotive control systems and In-vehicle Communication Protocols
- 4 To introduce diagnostic methodologies and safety aspects in automotive system

Course Outcomes:

After completion of the course, students will be able to

- CO 1 Explain the functioning of automotive systems
- CO2 Identify key components of automotive control systems and represent in terms of block diagram
- CO3 Develop a model for simple systems using model based development.
- CO4 Compare communication protocols, safety systems and diagnostic systems Estimate

Unit 1: Fundamentals of Automotive Systems

Overview of an Automotive System, Basics of Spark Ignition, Compression Ignition Engines, Need of Electronics in Automobiles, Ignition systems, Transmission systems, Suspension system, Braking system, Steering system, Fuel Delivery system, Alternator and battery charging circuit, Basics of Hybrid Electric Vehicles.

Unit II:Automotive Sensors, Actuators, Control Systems(08)

Systems approach to Control and Instrumentation: Concept of a system, Analog and Digital system, Basic Measurement system, Types of Control Systems, Sensor Characteristics, In-vehicle Sensors: Air flow sensing, Crankshaft Angular Position sensing, Throttle angle sensing, Temperature sensing, EGO sensor, Vibration sensing (in Air Bags), Actuators: Fuel injector, EGR actuator, Ignition system, Variable Valve Timing (VVT), BLDC motor, Electronic Engine Control, Engine Management System strategies for improving engine performance and efficiency.

Unit III: Microcontrollers / Microprocessors in Automotive Domain, Model (09) Based Development

Critical review of Microcontroller / Microprocessor (Architecture of 8-bit /16-bit Microcontrollers with emphasis on Ports, Timers/Counters, Interrupts, Watchdog Timer and PWM), Criteria to choose the appropriate microcontroller for automotive applications, Automotive grade processors, Fuel Maps and Ignition Maps, Introduction to Model Based Development.

(10)

MKSSS's Cummins College of Engineering for Women, Pune

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University)

Unit IV: Automotive Communication Protocols

Overview of Automotive Communication Protocols, CAN, LIN, FLEXRAY, MOST, Communication Interface with ECUs, Interfacing with infotainment gadgets, Application of telematics in automotive domain: GPS and GPRS, Relevance of Protocols such as TCP/IP, Bluetooth, IEEE 802.11x standard, in automotive applications.

Unit V: Safety Systems in Automobiles, Diagnostics, Standards

Active Safety Systems: Anti-lock Braking System (ABS), Traction Control System, Electronic Stability Program, Passive Safety systems: Airbag System, Advanced Driver Assistance System (ADAS), Anti-theft systems, Fundamentals of Diagnostics, Self Diagnostic System, On-Board Diagnostics and Off-Board Diagnostics, Importance of Reliability in Automotive Electronics, Reliability Testing with example, Environmental and EMC Testing for Automotive Electronic Components, ISO, IEC and SAE Standards.

Text Books:

- 1 Williams B. Ribbens, "Understanding Automotive Electronics", *Newnes*, (7thEdition), (2003).
- 2 Robert Bosch, "Automotive Electronics Handbook", John Wiley and Sons, (1stEdition), (2004).

Reference Books:

- 1 Ronald K Jurgen, "Automotive Electronics Handbook", McGraw-Hill, (2nd Edition), (1999).
- 2 James D Halderman, "Automotive Electricity and Electronics", *PHI Publication*, (1st Edition), (2005).
- 3 Tom Denton, "Automobile Electrical & Electronic Systems", *Routledge*, (4thEdition), (2002).
- 4 Tom Denton, "Advanced Automotive Diagnosis", *Elsevier*, (2"^d Edition), (2006).
- 5 V.A.W. Hillier, **"Fundamentals Automotive Electronics"**, *Oxford University Press*, (6th Edition), (2014).
- 6 Mehrdad Ehsani, Ali Emadi, Yimin Gao, "Modern Electronic, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory and Design", *CRC Press*, (2nd Edition), (2009).
- 7 Terence Rybak, Mark Steffka, "Automotive Electromagnetic Compatibility (EMC)", *Springer*, (2004).

Online Resources:

1 NPTEL Course "Fundamentals of Automotive Systems" <u>https://onlinecourses.nptel.ac.in > noc20_de06 > preview</u>

(08)

MKSSS's Cummins College of Engineering for Women, Pune

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisites: Basics of Control Systems, Basics of Communication System

Course Objectives:

- 1 To integrate the digital electronics with cockpit equipment
- 2 To understand the various principles in flight desk and cockpit panels.
- 3 To understand the communication techniques used in aircraft.
- 4 To explain the modern era of flight control system

Course Outcomes: The student will be able to

- 1 Identify the mechanical and electronic hardware required for aircraft.
- 2 Compare the communication and navigation techniques used in aircrafts.
- 3 Disseminate the autopilot and cockpit display related concepts.
- 4 Compare and identify different actuators in avionics.

Unit 1: **Introduction to Avionics**

Basics of Avionics-Basics of aircraft- glider - control surfaces- Cockpits instrumentation -Need for Avionics - Integrated Avionics Architecture.

Digital Avionics Bus Architecture Unit 2:

Avionics Bus architecture-Data buses MIL-RS 232- RS422-RS 485-STD 1553- ARINC 429-ARINC 629- Aircraft system Interface- Network topologies.

Unit 3: **Flight Deck and Cockpit**

Control and display technologies CRT, LED, LCD, EL and plasma panel – Touch screen – Direct voice input (DVI) - Civil cockpit and military cockpit: MFDS, PFDS-HUD, HMD, HMI

Unit 4: **Avionics Systems**

Communication Systems - Navigation systems - Flight control systems - Radar electronic Warfare – Utility systems Reliability and maintainability Fundamentals- Certification-Military and civil aircrafts.

Unit 5: **On Board Navigation Systems**

Overview of navigational aids, Flight planning, Area navigation, required time of arrival, RNAV architecture , performance aspects, approach and landing challenges, regulatory and safety aspects, black box instrumentation INS, GPS and GNSS characteristics.

Page 21

(06)

(07)

(08)

(07)

(07)

(06)

Unit 6: Basics of Final Control Element

Basics of pneumatic, hydraulic and electric actuators, Function of DC Servo motor, AC Servo motor function of pneumatic, hydraulic actuators.

Text Books:

- 1 R.P.G. Collinson, "Introduction to Avionics", Chapman & Hall Publications, 1996.
- 2 N. S. Nagaraja(1996), Elements of electronic navigation, 2 edition, Tata McGraw Hill, New Delhi.

Reference Books:

- 1 Cary R .Spitzer, "The Avionics Handbook", CRC Press, 2000.
- 2 Middleton, D.H. "Avionics Systems", Longman Scientific and Technical, Longman Group UK Ltd., England, 1989.
- 3 Spitzer, C.R. "Digital Avionics Systems", Prentice Hall, Englewood Cliffs, N.J., U.S.A., 1987.
- 4 Brain Kendal, "Manual of Avionics", The English Book House, 3rd Edition, New Delhi, 1993

20OE601D Bioinformatics

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisites:

Course Objectives:

- 1 To understand the basics of bioinformatics and explore various databases used in bioinformatics.
- 2 To be familiar with a set of well-known supervised, unsupervised learning algorithms used for bioinformatics applications.
- 3 To understand the concepts and types of Phylogeny.

Course Outcomes: Students will be able

- 1 Apply basic concepts of bioinformatics to biological data analysis.
- 2 Classify different types of biological databases.
- 3 Apply various techniques, algorithms and tools to nucleic acid and protein sequence analysis.
- 4 Apply various techniques, algorithms and tools to be used for phylogenetic analysis.

Unit 1: Introduction to Bioinformatics

Definition, applications, Protein and DNA structure, Biological Data Acquisition: The form of biological information. Retrieval methods for DNA sequence, protein sequence

Unit 2: Bioinformatics Databases

Format and Annotation: Conventions for database indexing and specification of search terms, Common sequence file formats. Annotated sequence databases - primary sequence databases, protein sequence, Information on various databases and bioinformatics tools available. For eg; nucleic acid sequence database (GenBank, EMBL, DDBJ), protein sequence databases (SWISSPROT, TrEMBL, PIR, PPB)

Unit 3: Algorithms for bioinformatics

Introduction to various machine learning techniques and their applications in bioinformatics. Genetic algorithm, Support Vector Machine, Neural Network and their practical applications towards the development of new models, methods and tools for bioinformatics

Unit 4: Sequence Analysis

Various file formats for biomolecular sequences - genbank, fasta, gcg, msf, nbrf-pir, etc Basic concepts of sequence similarity, identity and homology, paralogues. Sequence based database searches - BLAST and FASTA algorithms

(08)

(06)

(08)

(08)

Page 23

Unit 5: Sequence Alignment

Pairwise and Multiple Sequence Alignments (MSA). Basic concept of sequence alignment, Pairwise alignment (Needleman and Wunsch, Smith and Waterman algorithms), MSA (Progressive and Hierarchical algorithms). Their use for analysis of Nucleic acid and protein sequences and interpretation of results

Unit 6: Phylogeny

Phylogeny analysis, definition and description of phylogenetic trees and its types. Various computational methods in phylogenetic and molecular evolutionary analysis

Text Books/Reference Books:

- 1 Hooman Rashidi, Lukas K. Buehler, 'Bioinformatics Basics: Applications in Biological Science and Medicine' (2nd Edition) (May 2005)
- 2 Des Higgins (Ed), Willie Taylor (Ed), 'Bioinformatics: Sequence, Structure and Databanks A practical approach' (1st Edition) (October 2000)
- 3 N.J. Chikhale and Virendra Gomase, 'Bioinformatics- Theory and Practice' (1st Edition)(July 2007)
- 4 Bioinformatics: Databases and Systems, by Stanley I. Letovsky
- 5 Bioinformatics Databases: Design, Implementation, and Usage (Chapman & Hall/ CRC
- 6 Mathematical Biology & Medicine), by SorinDraghici
- 7 Data base annotation in molecular biology, principles and practices, Arthur M.Lesk
- 8 Current topics in computational molecular biology, Tao, Jiang, Ying Xu, Michael Q.Zang

(**06**) 9nme

(06)

200E601E COMPUTER VISION

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisite:20EC501 Digital Signal Processing

Course Objectives:

- 1 To introduce major ideas, methods and techniques of Computer Vision algorithms
- 2 To introduce fundamentals of Image formation
- 3 To explain concepts of Camera Calibration and Stereo Imaging
- 4 To explain different Background Subtraction techniques and Motion tracking algorithms

Course Outcomes:

After completion of the course, students will be able to

- CO1 Explain the fundamentals of Image formation, Camera calibration parameters and Stereo Imaging
- CO2 Apply camera calibration concepts to calculate intrinsic and extrinsic parameters of camera
- CO3 Explain different Background Subtraction techniques and Calculate the Performance measures of it.
- CO4 Select the appropriate feature extraction techniques according to the requirement of the applications
- CO5 Analyze the appropriate Background Subtraction techniques and Object tracking algorithms according to the requirement of the applications

Unit I: Camera Calibration

Geometrical primitives and transformations, 3D to 2D projections, Image Formation, Capture and Representation, Camera Calibration and parameters, Digital camera.

Unit II: Stereo Imaging

Stereo Vision: Epipolar geometry, Rectification, Correspondence, triangulation, RANSAC algorithm, Dynamic programming.

Unit III: Visual Features and Representations

Edge, Blobs, Corner Detection, SIFT, SURF, HoG.

Unit IV:Background Subtraction Techniques for Moving Object Detection(09)Frame differencing, Mean and Median filtering, Gaussian Mixture Model (GMM), Kernel density
estimation, Applications.

(07)

(08)

(09)

Unit V: Motion Tracking

(09)

Motion tracking using Optical flow, blob tracking, Colour feature based mean shift, Kalman tracking, Applications.

Text Books:

- 1 D. Forsyth, J. Ponce, "Computer Vision, A Modern Approach", *Prentice Hall*, (2nd Edition), (2003).
- 2 R. Szeliski, "Computer vision algorithms and applications", *Springer-Verlag*, (2nd Edition), (2010).

Reference Books:

- 1 L. G. Shapiro, George C. Stockman, "Computer Vision", *Prentice Hall*, (1st Edition), (2001
- 2 E. Trucco, A. Verri, "Introductory Techniques for 3-D Computer Vision", *Prentice Hall*, (1st Edition), (1998)
- 3 D. H. Ballard, C. M. Brown, "Computer Vision", Prentice Hall, (1st Edition), (1982).
- 4 M. Sonka, V. Hlavac, R. Boyle, "Image Processing, Analysis, and Machine Vision", *Thomson Press*, (3rd Edition), (2011).

Online Resources:

- NPTEL Course "Computer Vision"
- 1 <u>https://nptel.ac.in/courses/106/105/106105216/</u>
- 2 <u>http://www.ai.mit.edu/projects/vsam/Publications/stauffer_cvpr98_track.pdf</u>
- 3 <u>https://people.cs.rutgers.edu/~elgammal/pub/ieeeproc-paper-final.pdf</u>
- 4 http://www.cs.cmu.edu/~16385/s15/lectures/Lecture24.pdf

MKSSS's Cummins College of Engineering for Women, Pune (An Autonomous Institute Affiliated to SavitribaiPhule Pune University)

20OE 601F Design Thinking

Teaching Scheme

Lectures: 3 Hours / Week Tutorial: - Examination scheme: In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisite:

Course Objectives:

Familiarize students with

- 1 Design thinking process
- 2 User centric approach for designing a solution
- 3 Problem analysis with various methods
- 4 Applications of Design Thinking

Course Outcomes:

Students should be able to

- 1 Analyze problems with various methods
- 2 Recommend a solution based on empathy, ideation, prototyping, and playful testing
- 3 Apply design thinking methods to generate innovative and user centric solutions
- 4 Test designed prototypes to reduce risks and accelerate organizational learning

Unit I: Design and Design Problems

What is Design? The components of design problems; measurement, criteria and judgement in design

A model of design problems – Defining problems: Selecting goals and diverse teams, creating a unified vision and scope, mapping stakeholders and personas; Analysing design problems, generators of design problems, roles of generators, design constraints

Unit II: Design Solutions

Solutions to Design Problems: Designer's response: procrastination, non-committal design and throw away design, design problems and solutions

Design Process: define, search, ideate, prototype, select, implement, learn, Refresher and restate the challenge, getting inspiration, understanding innovation ambition, Solution ideation, Narrowing solution choice, Solution evaluation, Road map

Unit III: Design Thinking

Types and Styles of Thinking – theories of design, types of thinking; creative thinking - what is creativity? creativity in design, Principles of design thinking

8 Hours

Lieve verte average

9 Hours

8 Hours

Unit IV: Design Philosophies and Strategies

Theory and practice, three early phases of working on the same problem Prototype Creation: Choosing a prototype approach, user interface prototypes, applications vs custom build, reference architectures, prototype and solution evaluation

Unit V: Design Tactics and Traps

Methods and Tactics, understanding the problem, the model of problems, One or many solutions? Common traps and ways of avoiding them

Text Books:

- 1 Bryan Lawson, "How designers think: The design process demystified", 2nd Edition, Butterworth Architecture
- 2 Nigel Cross, "Design Thinking", Berg Publishers 2011

Reference Books:

- 1 Ben Crothers, "Design Thinking Fundamentals", O'Reily
- 2 Tim Brown, "Change by Design: How Design Thinking Transforms Organizations", HarperCollins 2009
- 3 Susan Weins Chenk, "Hundred things every designer needs to know about people", New Riders Publication
- 4 Vijay Kumar, "101 Design Methods: A Structured Approach for Driving Innovation in Your Organization", Wiley Publication
- 5 Roger L. Martin, "Design of Business: Why Design Thinking is the Next Competitive Advantage" Harvard Business Press
- 6 Karl Ulrich, "Design: Creation of Artifacts in Society" 2011
- 7 Bala Ramadurai, "Karmic Design Thinking"
- 8 T. Amabile, "How to kill creativity", SAGE Publication 2006
- 9 William Lidwell, Kritina Holden, Jill Butler, "Universal principles of Design ", Rockport Publishers
- 10 Bella Martin, Bruce Hanignton, Bruce M Hanington "Universal methods of design", Rockport Publishers - 2012
- 11 Roman Kizanie, "Empathy: Why it matters, how to get it", TarcherPerigee Publishers
- 12 Karla McLaren, "The Art of Empathy: A complete Guide to life's most essential skill", Sounds True Publishers

8 Hours

9 Hours

20OE601G e-Business

Teaching Scheme Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisite: No Prerequisites

Course Objectives:

To facilitate the learners to-

- 1. Understand the technological, economic and social phenomena behind rapid changes in the ebusinesses.
- 2. Have a good working knowledge of e-business concepts, applications and technologies.
- 3. Understand the e-business models and infrastructure.
- 4. Learn how e-business concepts are applied to different fields, such as: education, banking, tourism and so on.
- 5. Inspire with online business ideas and motivate them to apply in the real life.
- 6. Study the new trends in e-business, e-commerce

Course Outcomes:

By the end of this course, students will be able to

- CO1 Explain the concepts of e-business and e-business models
- CO2 Apply suitable principles and practices of designing and developing e-business website
- CO3 Apply necessary back end system components required for successful e-business implementations
- CO4 Outline the meaning of e-business security and how it impacts the business
- CO5 Relate e-business, BI and KM to fulfil modern e-business trends

Unit I: Introduction

E-commerce and e-business, advantages of e-business in growth of a business, Transition from traditional business to e-business, features of e-business technology, e-business models, IT Infrastructure requirements of e-business Case Study : Various e-business models

Unit II: Building e-business Websites

Issues involved in designing a website, designing in-house websites, steps involved in website development, e-business and website development solutions, Advantages of using an e-business solution, selection of a suitable e-business solution, security issues involved in websites, tracking and analysing website traffic data. Digital Marketing Case Study

Unit III: e-Business Infrastruture / Back end Systems

Back end system support requirements - security, scalability, availability, adaptability, manageability, maintainability, assurance, interoperability, load balancing; internet technology, World Wide Web, Internet software; Content management, Case Study

(07)

(07)

(07)

Unit IV: e-security & online payment systems

e-Business security policy, risks and risk assessment, practice guidelines to e-security, legal framework and enforcement, ethical, social and political issues in e-business

Performance characteristics of online payment systems, online payment methods, security and risk handling in online payments, fraud detection in online payments, IT Act 2000, digital signatures, digital certificates, and PKI; Case Study

Unit V: Knowledge management & BI for strategic e-business

From information processing to knowledge world, aligning knowledge with business, knowledge management platforms, state of knowledge and measuring parameters; knowledge industry, knowledge strategy, and knowledge workers

Business and Intelligence - applications and importance of business intelligence, implementation of intelligence, building BI systems, selecting BI tools, integrating BI and KM, decision-making and BI, Case Study

Unit V: Launching an e-Business and e-business trends

Launching a successful e-business – requirement analysis, managing Web site development, search engine optimization, Evaluate Web sites on design criteria.

Future and next generation of enterprise e-business, challenges and new trends, ethical and regulatory issues

Text Books:

- 1. Papazoglou, Michael and Pieter Ribbers, "E-Business : Organizational and Technical Foundations", John Wiley, 2nd Edition (Sept 2011).
- 2. Parag Kulkarni, Sunita Jahirabadkar, Pradeep Chande, "E-Business", Oxford University Press (May 2012)

Reference Book:

- 1. Daniel Amor, "The E-business (R)evolution", Prentice Hall PTR (2000)
- 2. Kenneth Laudon, Carol Guercio, "E-commerce : Business, Technology, Society", Prentice Hall, 4th Edition (January 2008).
- 3. Kalakota Ravi, Marcia Robinson, "E-Business 2.0 Roadmap for Success", Pearson Education, 2nd Edition (2004).

(07)

(08)

(06)

20OE601H - Electric Vehicles

Teaching Scheme

Lectures: 3 Hours / Week Tutorial: - Examination scheme: In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Course Objectives:

- 1 Understand and identify and integrate EV subsystems
- 2 Learn and find energy storage requirements for vehicle application
- 3 Comprehend design of battery thermal management system
- 4 Undestand calculations of motor power ratings for an EV application
- 5 Study suitable type of sensors for EV applications
- 6 Study appropriate control strategy for EV

Course Outcomes:

Students should be able to

- 1 To identify and integrate EV subsystems
- 2 To calculate energy storage requirements for vehicle application
- 3 To select and design battery thermal management system
- 4 To calculate motor power ratings for an EV application
- 5 To select a suitable type of sensors for EV applications
- 6 To select appropriate control strategy for EV

Unit 1: Introduction to hybrid and electric vehicles:

Engineering case, legislative push, incentives, market pull. EV : micro to mild to PHEV to HEV to REEV to EV - Hybrid-Electric Vehicle Power trains, Vehicle Energy Storage System Design, System and sub-systems, Modelling and design of EVs as a system, Motors & motive power spilting concepts, and interface within power train system

Unit 2: Power train architecture:

Parallel, Series and Combined, Types of EVs, Vehicle layout and packaging options, Duty Cycles in Indian cities; performance, Components of Power Train, Auxiliary Inverter, HV-LV DC-DC converter, Traction Inverter, Gear Trains, Integration of power train components, regenerative brakes

Unit 3: Introduction to Energy Storage

Energy storage requirements for vehicle applications, Storage technologies and metrics for comparison, Distribution of Energy, Storage Form of Energy, Intermediary Conversion, Control and Diagnostic, Ragone Chart, Theory of Ragone Plots. Ragone Plot of a Battery

(6)

(6)

(6)

Unit 4: BMS, Packing and Charging:

Battery Management Systems (BMS), Lithium-Ion Batteries Aging Effects. Battery characterization and testing systems, Thermal management & Battery life cycle, Modular battery packs, packaging, thermal control, Changing Systems and Infrastructure

Unit 5: Electric Drives

DC motors, induction motors and synchronous motors, permanent magnet motors, BLDC, switched reluctance motors, Switched Reluctance Motors (SRM),Permanent Magnet Synchronous Motor (PMSM)

Unit 6: Sensors in Electric Vehicles:

MEMS Sensors for Engine Management, Battery Monitoring Sensors, State of the Charge Sensing, Sensors for Passenger Safety, Sensors for Skidding and Rollover Detection, Tire Pressure Sensors, Electronic Stability Control of Vehicles, Sensors for Antitheft, Vehicle Navigation Sensors. EV sensors of Texas Instruments, STM, NXP, etc.

Books:

- 1 Mehrdad Ehsani, Yimin Gao, Sebastian E.Gsay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Celll vehicles-Fundamentals - Theory and Design", CRC Press
- 2 Energy Storage by Robert A. Huggins, Springer Publication
- 3 Chang Liang Xia, Permanent Magnet Brushless Dc Motor Drives and Controls, Wiley 2012.
- 4 Katsuhiko Ogata, "Modern Control Engineering" 5th edition, Prentice Hall of India Private Ltd., New Delhi, 2010.
- 5 Cooper W.D & Coo

(6)

(6)

(6)

200E 601I Gamification

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Course Objectives:

To facilitate the learner to

- 1 To develop problem solving abilities using gamification.
- 2 To identify the various methods of gamification.
- 3 To apply gamification mechanics to solve a problem.
- 4 To make use of gamification tools to solve a problem.

Course Outcomes:

After completion of the course, students will be able to

- 1 To apply steps of problem solving using gamification.
- To analyze player motivation and counter gamification. 2
- 3 To develop game using game mechanics.
- 4 To apply tools of gamification to real life applications.

Gamification is about applying game concepts, driving engagement into non game environments/contexts like a website designing, online community for interactive discussion, a fun way of learning management system for engagement of stakeholders etc.

Gamification is NOT about designing fancy games, video games, virtual reality games etc. Therefore this course does NOT cover games and game design aspects. Course will also discuss the negative impact and influence of games (when played in excess) on young minds like addiction to video games, over spending time for games.

Unit I: **Gaming Foundations**

Introduction, Resetting Behavior, Replaying History, Gaming foundations: Fun Quotient, Evolution by loyalty, status at the wheel, the House always wins.

Unit II: **Player Motivation**

Powerful Human Motivators, Why People Play, Player types, Social Games, Intrinsic verses Extrinsic Motivation, Progression to Mastery, Case studies for Thinking: Tower of Hanoi, Concepts Applied to Video games and Gamification.

Counter Moves in Gamification Unit III:

Reclaiming Opposition: Counter gamification, Gamed Agencies: Affectively Modulating Our Screen-and App-Based Digital Futures, Remodeling design, Designing for Engagement, Case study of Maze Problem.

(6)

(7)

(8)

Unit IV: Game Design

Game Mechanics and Dynamics: Feedback and Re-enforcement, Game Mechanics in depth, Putting it together, Case study of 8 queens problem.

Unit V: Game Mechanics and Applications

Gamification case Studies, Coding basic game Mechanics, Gamification Applications : Education, Healthcare, Marketing, Gamification for Machine Learning.

Unit VI: Gamification Platforms

Instant Gamification Platforms, Mambo.io(Ref:http://mambi.io), Installation and use of BigDoor (Open Source <u>http://bigdoor.com),ngageoint/gamification-server</u> (ref: https://github.com/ngageoint/gamification-server).

Text Books:

- 1 Mathias Fuchs, Sonia Fizek, Paolo Ruffino, Niklas Schrape, Rethinking Gamification, Meson Press, 2014, ISBN: 978-3-95796-000.
- 2 Gabe Zechermann, Christopher Cunningham, Gamification by Design, Oreilly, August 2015, ISBN: 978-1-449-397678.

Reference Books:

- 1 B. Burke, Gamify: How Gamification Motivates People to Do Extraordinary Things, Gartner 2014, ISBN: 1937134857.
- 2 **Stieglitz**, S.**Lattemann**, C.**Robra-Bissantz**, S.**Zarnekow**, R.**Brockmann**, Gamification :Using Game Elements in Serious Contexts, 2016, ISBN: 978-3-319-45557.

(8)

(7)

(6)

20OE 601J Geographical Information Systems

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme: In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Course Objectives:

To facilitate the learner to

- 1 Learn basics of GIS
- 2 Understand representation of GIS models
- 3 Relate GIS and DBMS for various applications, analyze and visualize the spatial data
- 4 apply GIS to supply chain management

Course Outcomes:

After completion of the course, students will be able to

- 1 Apply basics of GIS to database design
- 2 Make use of various data models to given data
- 3 Apply data editing techniques to spatial data
- 4 Apply spatial data analysis to GIS data
- 5 Create maps using ArcGIS
- 6 Apply GIS in supply chain management

Unit I: Introduction to GIS

Define GIS, GISystems, GIScience, Spatial and Geoinformation, Components of GIS, Recent trends and applications of GIS; Data structure and formats, Spatial data models – Raster and vector, Database design- editing and topology creation in GIS, Linkage between spatial and non-spatial data, Data inputting in GIS. Rectification, Transformation Methods; Root Mean Square (RMS) Error

Unit II: Data Types and data models

Data Types; Spatial Data; Non-Spatial Data, Data Input; Existing GIS Data, Metadata; Conversion of Existing Data, Creating New Data, Data Models; Vector Data Model; Raster Data Model; Integration and Comparison of Vector and Raster Data Models.

Unit III: Data Exploration and spatial data editing

Attribute Data in GIS, Attribute Data Entry, Manipulation of Fields and Attribute Data, Data Exploration; Attribute Data Query, Raster Data Query, Map- Based Data Manipulation, Types of of Digitizing Errors, Causes for Digitizing Errors; Topological Editing and Non-topological Editing; Other Editing Operations; Editing Using Topological Rules.

(05)

(08)

(05)

Unit IV: Spatial data Analysis

Spatial Data: Definition, Analysis, Processes & Steps, Software and Tools, Geodatabase Model, Role of Databases in GIS, Creating, Editing and Managing, Classification scheme of Vector-Based and Raster- Based GIS Operation Raster- Based Techniques: Methods of reclassification, overlay analysis, Digital Terrain Analysis and Modeling- TIN and DEM, Surface representation and analysis, Slope and Aspect, Geographic Visualization Data Classification

Unit V: ArcGIS

Introduction, Geographical terms, ArcMap main window, Coordinate system, Georeferencing, Generation of vector referencing, Table administration, Geoprocessing tools, spatial analysis, Design and publication, API for ArcGIS

Unit VI: Trends and applications

Need for GIS network analysis in SCM, data for GIS logistic service, understanding logistic management, types of GIS services, supply chain audit, ISRO-Bhuvan, Web GIS

Text Books:

- 1 "Fundamentals of GIS", Franz Pucha et al, 2018
- 2 "Principles of Geographic Information Systems", Kang-tsung chang, 2017

Reference Books:

- 1 "Essentials of Geographic Information Systems", Jonathan E. Campbell Michael Shin, 2018
- 2 "Introduction to GIS", Víctor Olaya

(08)

(08)

(08)

200E601K MULTIMEDIA SYSTEMS

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme: In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisite:20EC402 Analog and Digital Communication **Course Objectives:**

- 1 To introduce basic concepts and design of Colour TV and Digital TV
- 2 To explain advanced TV technologies like HDTV, CATV, CCTV, DTH, CAS and case study for live telecast
- 3 To introduce multimedia compression techniques, standards and multimedia over the internet
- 4 To familiarize the students with digital recording and playback systems, acoustic design, microphones and loudspeakers

Course Outcomes:

After completion of the course, students will be able to

- CO1 Explain the concepts of colour TV design, systems and Digital TV
- CO2 Discuss and compare advanced TV systems like CATV, CCTV, DTH, HDTV, CAS, Wifi TV, 3DTV and different display technologies
- CO3 Apply and analyze multimedia compression standards for text, audio, image and video and explain multimedia over the internet
- CO4 Compare optical recording techniques, microphones and loudspeakers
- CO5 Design acoustics and PA system for auditorium, public meeting, debating hall, football stadium and college classrooms

Unit I: Colour and Digital TV

Resolution, interlaced scanning, BW, CVS, Color TV systems, frequency interleaving, colour difference signals, colour TV receiver, NTSC, PAL, SECAM encoders and decoders, Introduction to Digital TV, Digital TV signals and parameters, Digital TV Transmitters and receivers.

Unit II: Advanced TV Systems

HDTV standards and systems, HDTV transmitter and receiver, CCTV, CATV, Direct to Home TV (DTH), Set top box, Conditional Access System (CAS), 3D TV systems, Case study (Cricket match, Marathon, Football match), Wi-Fi TV, Video door phone systems, Display devices: LED, LCD, Plasma.

Unit III: Multimedia Compression and Multimedia over Internet (11)

(11)

(10)

Introduction, Overview, Concept of Multimedia, Multimedia Applications, Text: Types, Compression, Hypertext, Image Compression techniques: JPEG, Multimedia Audio: MIDI, MP3, Video: MPEG, Animation: Introduction, types, 3D animation, Virtual reality, Multimedia over Internet: Introduction to Multimedia Services, Transmission of Multimedia over the Internet, IP Multicasting, Explaining VOIP

Unit IV: Acoustics and Digital Audio Video

Optical recording, noise, CD, DVD, dual layer DVD, rewritable DVD, Blu Ray DVD, Studio acoustics and reverberation, acoustic chambers, PA system for : auditorium, public meeting, debating hall, football stadium, college hall, Advanced PA systems, Different types of speakers and microphones.

Text Books:

- 1 R. R. Gulati, "Modern Television Practice", New Age International, (5th Edition), (2015).
- 2 Ralf Steinmetz, Klara Nahrstedt, **"Multimedia: Computing, Communication and Applications"**, *Pearson Publication*, (8th Edition), (2011).
- 3 R.G. Gupta, "Audio and Video Systems", *Tata Mcgraw Hills*, (2nd Edition), (2020).
- 4 Robert D. Finch, "Introduction To Acoustics", PHI, (2nd Edition), (2007).
- 5 Dayanand Ambawade, Dr. Deven shah, Prof. Mahendra Mehra, "Advance Computer Network", *Wiley*, (2nd Edition), (2014).

Reference Books:

- 1 A. M. Dhake, "**Television and Video Engineering**", *Tata Mcgraw Hills*, (2nd Edition), (2003).
- 2 Ranjan Parekh, "Principles of Multimedia", Tata Mcgraw Hills, (2nd Edition), (2013).
- 3 Alec Nisbett, "The Sound Studio", Focal Press, (5th Edition), (1993).

Online Resources:

NPTEL Course " Multimedia Systems"

1 https://nptel.ac.in/courses/117/105/117105083/

(10)

20OE 801A Big Data And Analytics

Teaching Scheme

Lectures: 3 Hours / Week

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Course Objectives:

To facilitate the learner to

- 1 Understand the concepts, challenges and techniques of Big data and Big data analytics
- 2 Understand the concepts of Hadoop, Map Reduce framework, Spark for Big data analytics
- 3 Apply skills and tools to manage and analyze the big data
- 4 Understand latest big data trends and applications.

Course Outcomes:

After completion of the course, students will be able to

- Apply basic concepts of big data for the various applications. 1
- 2 Apply data analytics life cycle to real-world big data applications
- 3 Choose Hadoop ecosystem components based on requirement of application
- 4 Compare Spark and Hadoop architecture
- 5 Compare various methods used in data Analytics and big data trends.

Unit I: Introduction

Database Management Systems, Structured Data, SQL. Unstructured data, NOSQL, Advantages of NOSQL, Comparative study of SQL and NOSQL. Big data overview, characteristics of Big Data, Case study- SAP HANA.

Unit II: Data Analytic Life Cycle

Data Analytical Architecture, drivers of Big Data, Emerging Big Data Ecosystem and new approach. Data Analytic Life Cycle: Discovery, Data preparation, Model Planning, Model Building, Communicate Results, Opearationalize. Case Study: GINA

Unit III: **Big Data Architectures, Hadoop**

Introduction to Big Data and Hadoop, Building blocks of hadoop: Ecosystem, HDFS, HBASE, YARN, Map Reduce working.

Unit IV: **Introduction to Spark**

Spark Framework, Architecture of Spark, Resilient Distributed Datasets, Data Sharing using Spark RDD, Operations in Spark;

Introduction to Kafka: need, use cases, components.

Examination scheme:

(7)

(6)

(6)

(8)

Unit V: Machine learning

Supervised, unsupervised learning; Classification, Clustering; Time series analysis, basic data analysis using python: libraries, functions.

Text Analysis: Text Pre-processing, Topic modelling algorithms, Text Similarity measure.

Unit VI: Big Data Trends and applications

Exploratory data analysis, Big data Visualization using python; IoT and big data, Edge computing, Hybrid cloud. Applications of Big data, Case study: E-commerce, healthcare.

Text Books:

- 1 "Data Science and Big Data Analytics", Wiley, 1stEdition (January 2015)
- 2 "Big Data, Black Book", Dreamtech Press (27 May 2015), ISBN-13-978-9351197577

Reference Books:

- 1 Arvind Sathi, "Big Data Analytics: Disruptive Technologies for Changing the Game", MC Press(November 2012)
- ² J.Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman, "Big Data for Dummies", 1st Edition (April 2013)
- 3 Tom White, "Hadoop: The Definitive Guide", O'Reilly, 3rdedition (June 2012)
- 4 Abraham Silberschatz, Henry Korth, S. Sudarshan, "Database System concepts", McGraw Hill Education, 6thEdition (December 2013).
- 5 Vignesh Prajapati, "Big Data Analytics with R and Hadoop", Packt Publishing (November 2013)
- 6 Shiva Achari ,"Hadoop Essentials Tackling the Challenges of Big Data with Hadoop" ,Packt Publishing(April 2015), ISBN:978-1-78439-668-8

Online/Web/Other References:

- 1 <u>https://nptel.ac.in/courses/106/104/106104189/</u>
- 2 <u>https://hadoop.apache.org/docs/stable/</u>
- 3 https://kafka.apache.org/documentation/
- 4 <u>https://spark.apache.org/</u>

(7)

20OE801B Cyber Physical System

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme: In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisite: 20EC404 Embedded System, 20EC603 Control Systems **Course Objectives:**

- 1 To introduce modeling of the Cyber Physical System (CPS).
- 2 To analyze the CPS.
- 3 To explain the software modules.

Course Outcomes:

After completion of the course, students will be able to

- Categorize the essential modeling formalism of CPS 1
- 2 Analyze the functional behavior of CPS based on standard modeling formalisms
- Apply specific software for the CPS using existing synthesis tools 3
- 4 Design CPS requirements based on operating system and hardware architecture constraints

Unit I: Cyber Physical Systems (CPS) applications and Characteristics (07)

CPS in the real world, Basic principles of design and validation of CPS, CPS: From features to software components, Mapping software components to Electronic Control Unit (ECU), CPS Performance Analysis: effect of scheduling, bus latency, sense and actuation faults on control performance, network congestion, Formal methods for Safety Assurance of CPS.

Unit II: **CPS** physical systems modeling

Stability Analysis: CLF (Common Lyapunov function), MLF (Multiple Lyapunov function), stability under slow switching, Performance under Packet drop and Noise.

Unit III: **CPS** computer systems modeling

CPS SW Verification: Frama-C, C Bounded Model Checker (CBMC), Secure Deployment of CPS: Attack models, Secure Task mapping and Partitioning, State estimation for attack detection, Hybrid Automata Modelling: Flow pipe construction using Flowstar (Flow*), Polyhedral Hybrid Automaton Verifier (Phaver) tools (Reliability testing).

Unit IV: **Operating systems and hardware architecture support for CPS** (07)

CPS SW stack RTOS, Scheduling Real Time control tasks. Principles of Automated Control Design: Dynamical Systems and Stability, Controller Design Techniques, CPS HW platforms: Processors, Sensors, Actuators, CPS Network.

(07)

(07)

MKSSS's Cummins College of Engineering for Women, Pune

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University)

Unit V: Analysis and verification of CPS

Advanced Automata based modeling and analysis: Basic introduction and examples, Timed and Hybrid Automata, Definition of trajectories, Formal Analysis: Flow pipe construction, Reachability analysis, Analysis of CPS Software, Weakest Preconditions, Bounded Model checking.

Unit VI: CPS case studies

Automotive Case study: Vehicle ABS hacking, Power Distribution Case study: Attacks on Smart grid.

Text Books:

- 1 Lee, Edward Ashford, and SanjitArunkumarSeshia, "Introduction to embedded systems: A cyber physical systems approach", MIT Press, (2nd Edition), (2017).
- 2 Rajeev Alur, "Principles of Cyber-Physical Systems". MIT Press, (1st Edition), (2015).
- 3 Wolf, Marilyn, "High-Performance Embedded Computing: Applications in Cyber-Physical Systems and Mobile Computing". Elsevier, (1st Edition), (2014).

Reference Books:

- 1 P. Tabuada, "Verification and control of hybrid systems: a symbolic approach", Springer-Verlag, (1st Edition), (2009).
- 2 Raj Rajkumar, Dionisio De Niz, and Mark Klein, "Cyber-Physical Systems", *SEI Series in Software Engineering*, (1st Edition), (2018).
- 3 André Platzer, "Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics", *Springer*, (1st Edition), (2010).
- 4 Jean J. Labrosse, "Embedded Systems Building Blocks: Complete and Ready-To-Use Modules in C", *CRC Press*, (2nd edition), (2011).

Online/Web/Other References:

1 Coursera course, Cyber Physical system modelling https://www.coursera.org/learn/cyber-physical-systems

(**07**)

(07)

200E801C Digital Control

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

(08)

(08)

Prerequisites: Basics of Control Systems

Course Objectives: To

- 1 Understand the basic components of a digital control system.
- 2 Design various Digital Controllers and Study response of those controllers.
- 3 Learn and understand the stability of the system in the Z plane.
- 4 Introduce Optimal Control Design and Its need.

Course Outcomes: Students will be able to

- 1 Analyse system design in various planes S-W-Z and its mapping.
- 2 Analyse system stability in the S and Z plane.
- 3 Design and analyse systems using classical methods and State Space.
- 4 Design Optimal Control for a Discrete System.

Unit 1: Introduction to Discrete Time Control System

Basic building blocks of Discrete Time Control System, Sampling Theorem, Choice of Sampling Rate, Z Transform and Inverse Z Transform for applications of solving Differential Equations, Impulse Sampling, Reconstruction – Zero Order Hold

Unit 2:Pulse Transfer Function and Digital Controllers(08)

Pulse Transfer Function, Pulse Transfer Function of Open Loop and Closed Loop System, Pulse Transfer Function of Digital PID Controller, Design of Deadbeat Controller

Unit 3: Stability Analysis of Discrete Control System

Stability regions in S plane W plane and Z plane, Mapping between three planes, Stability Tests for Discrete Systems

Unit 4:Design of Discrete Control System by State Space Approach(07)

Different Canonical Forms, Relation between Pulse Transfer Function and State Equation, Solution of Discrete Time State Space Equations, Eigen Values, Eigen Vectors

MKSSS's Cummins College of Engineering for Women, Pune

(An Autonomous Institute Affiliated to SavitribaiPhule Pune University)

Unit 5: Pole Placement and Observer Design

Concept of Controllability and Observability, Pole Placement Design by State Feedback, Design of Feedback Gain Matrix by Ackerman's Formula, State Observer Types.

Unit 6: Introduction to Optimal Control

Basics of Optimal Control, Quadratic Optimal Control, Performance Index.

Text Books:

- 1 K. Ogata, "Discrete Time Control Systems", Prentice Hall, Second Edition.
- 2 M. Gopal, "Discrete Control and State Variable Methods", Tata McGraw Hill.
- 3 Kannan Moudgalya, "Digital Control", John Wiley and Sons.

Reference Books:

- 1 G. F. Franklin, J. David Powell, Michael Workman, "Digital Control of Dynamic Systems", Addison Wesley, Third Edition.
- 2 M. Gopal, "Digital Control Engineering", Wiley Eastern LTD.
- 3 Forsytheand W, Goodall R, "Digital Control".
- 4 Contantine H. Houpis, Gary B. Lamount, "Digital Control Systems", McGraw Hill International, Second Edition.

(07)

(05)

6

7

20OE801D Industrial Engineering and Management

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Course Objectives:

The Industrial Engineering course prepares students to...

- 1 Understand type of organisation and calculate partial and total productivity
- 2 Learn the fundamental knowledge, skills, tools and techniques of methods study and work measurement.
- 3 Understand type of production environments, resource planning and control methods.
- 4 Learn basic resource scheduling techniques, human resource management and industrial safety norms.

Course Outcomes:

Students will be able to

- 1 Identify type of organisation and analyze partial and total productivity
- 2 Manage and implement different techniques of methods study and work measurement of process under consideration for improvement.
- 3 Analyze production environment under consideration w.r.to its resource planning and control.
- 4 Apply basic resource scheduling and human resource management techniques.

1 Introduction to Industrial Management and Productivity Analysis

- 1 Industrial management: Functions and principles of management; Organisation: Concept, characteristics, structures and types of organisation- (formal line, military, functional, line and staff organisation);
- 2 Productivity analysis: Definition, measurement of productivity: productivity models and index (numerical); factors affecting the productivity; productivity improvement techniques;
- 3 Definition and scope of Industrial Engineering.

2 Method Study

- 1 Work Study: Definition, objective and scope of work-study.
- 2 Method Study : Definition, objective and scope of method study, activity recording and exam aids, Charts to record moments in shop - operation process charts, flow process charts, travel chart, two handed chart and multiple activity charts. Charts to record movement at work place - principles of motion economy, classification of moments, SIMO chart, and micro motion study. Definition and installation of the improved method;
- 3 Human factors in Work-Study;
- ⁴ Value Engineering and Value Analysis.

3 Work Measurements

- 1 Introduction: Definition, objectives and uses; Work measurement techniques:
- 2 Time study: Definition, time study equipment, selection of job, steps in time study. Breaking jobs into elements, recording information. Rating and standard rating, standard performance, scales of rating, factors affecting rate of working, allowances and standard time determination(numerical);
- 3 Work sampling: Need and procedure, sample size determinations (numerical);
- ⁴ Synthetic motion studies: PMTS and MTM. Introduction to MOST (numerical).

4 **Production Management**

- ¹ Production Planning and Control: Types of production systems, functions of PPC, Aggregate production planning; Master Production Schedule; ERP
- 2 Forecasting techniques: Causal and time series models, moving average, exponential smoothing, trend and seasonality; (Numerical).
- 3 Supply Chain Management: Concept, Strategies, Supply Chain Network, Push and Pull Systems, Logistics, Distribution; Order Control strategies: MTO, MTA, MTS.

5 Facility Management

- 1 Facility Layout: Factors affecting facility location; Types of Plant Layout; Computer Aided Layout Design Techniques; Assembly Line Balancing (Numerical);
- ² Material Handling and Inventory Control: Principles, Types of Material Handling Devices; Stores Management, Inventory costs, Types of inventory models -Deterministic and Probabilistic, Concept of EOQ, purchase model without shortages (Numerical); ABC and VED Analysis (Numerical).

6 Project Scheduling, Human Resource and Industrial Safety

- 1 Scheduling Techniques: CPM and PERT(Numerical);
- 2 Human Resource Development: Functions: Manpower Planning, Recruitment, Selection, Training; Concept of KRA (Key Result Areas); Performance Appraisal (Self, Superior, Peer, 360⁰);

6

6

7

Text Books:

- 1 Industrial Engineering and Production Management, M Mahajan, Dhanpat Rai and Co.
- 2 Industrial engineering and management by O. P. Khanna, Dhanpatrai publication
- 3 Industrial Engineering, Martend Telsang, S. Chand Publication.
- 4 Industrial Organisation & Engineering Economics by Banga and Sharma, Khanna publication.
- 5 Prem Kumar Gupta, D. S. Hira, Problems in Operations Research: Principles and Solutions, S. Chand, 1991
- 6 J. K. Sharma, Operations Research : Theory And Application, Laxmi pub. India.

Reference Books:

- 1 Introduction to Work Study by ILO, ISBN 978-81-204-1718-2, Oxford & IBH Publishing Company, New Delhi, Second Indian Adaptation, 2008
- 2 Maynard's Industrial Engineering Hand Book By H.B. Maynard, KJell, McGraw Hill Education, 2001
- 3 Zandin K.B. Most Work Measurement Systems, ISBN 0824709535, CRC Press, 2002.

Assignment based evaluations are designed. **This evaluation is treated as T1-Marks**. Marks will be calculated (at the end of semester) on the basis of successful completion / submission of assignments explained to you time to time on the basis of syllabus content. [Note: these assignments are part of activity based learning. Hence, students are to work in a group to complete following assignments].

Assignment Details	Mapped COs
 Case study based Assignment on Method Study. [Data may be collected from: Day to day activity : Workshop, Library, Admin area, Canteen, Parking 2) Students visiting industrial area for project 3) Quality concept Assignments in a Group.] 	CO1
2. Hands on Assignment on application of Work Measurement technique(s).[1) Using stopwatch work measurement can be completed. (E.g. in workshop)]	CO1, CO1
 3. Simulation / Assignment on Routing & Scheduling Model. [Open Source Softwares 1) Flexsim (Videos are available online) 2) Arena - Student Version 3) Pro model – Student Version 4) Excel templates available online. Note: Backward / Forward Scheduling concepts are to be included.] 	CO1, CO4
4. Assignment on simulation of Manufacturing System / Service System Operations for demand forecasting of the given product using any two methods.[1) Data from shops malls, manufacturing company, etc.]	CO1, CO4
5. Assignment on simulation determination of EOQ and plot the graphs. [1) Use of any freeware available.]	CO1, CO4
6. Assignment on analysis of Manufacturing / Service Operation for Capacity Planning. [1) Define capacity term for the real life environment you are working for (e.g. foundry= tons of casting, hospital = no. of bed, etc.) 2) Study and collect the data of Variation in demand and capacity planning. 3) Analysis the pattern of data set and report how they manage the change in capacity.]	CO1, CO4
7. Case study based assignment on supply chain model. [1) Select any real life supply chain (any engineering product processing, vendors for vegetable grocery, etc.) 2) Identify all major supply chain elements and prepare supply chain diagram and report.]	CO1, CO4
8. Assignment on analysis of (selected) plant layout modeling / Simulation for bottleneck / line balancing. [Plant layout with its detail (with Scale) and identify the type.]	CO1, CO4
9. Assignment on analysis of material handling system - for the selected plant layout. [This assignment must be completed with the help of plant layout visited in earlier assignment.]	CO1, CO4
10. Case study based assignment on identification of Key Result Areas for performance appraisal for selected company (3600 feedback). [Real life case studies.]	CO1, CO4
11. Assignment on industrial safety audit of selected work environment. [Download standard questionnaire and visit any work environment and submit it as assignment.]	CO1, CO4
Note: If student groups working with industry for their project, they are advised to collect data related to above mentioned assignments for submission.	

20OE 801E Introduction to Cyber Crime and Forensics

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme: In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Course Objectives:

To facilitate the learners to-

- 1 Learn fundamental concepts of cyber security
- 2 Understand Security challenges presented by mobile devices and information system access in cybercrime world
- 3 Learn tools used in Computer forensics and Cyber Applications
- 4 Understand risks associated with social media networking

Course Outcomes:

By taking this course the learner will be able to-

- 1 Classify Cyber Crimes
- 2 Identify threats and risks within context of Cyber Security
- 3 Outline Relevant laws and Acts in Cyber Security
- 4 Appraise various roles and tools used in Cyber Security/ Digital forensics

Unit I: Introduction to Cybercrime:

Introduction, Cybercrime, and Information Security, Who are Cybercriminals, Classifications of Cybercrimes, Ethical dimensions of cybercrime,Ethics and Morality,Cybercrime: The legal Perspectives and Indian Perspective, Cybercrime and the Indian ITA 2000, A Global Perspective on Cybercrimes

Unit II: Cyber Offenses:

How Criminals Plan Them: Introduction, How Criminals plan the Attacks, Typical Cyber Crimes like Social Engineering, Cyber stalking, Cyber Defamation, Intellectual property Infringement Botnets: The Fuel for Cybercrime, Dark net

Unit III: Cybercrime:Mobile and Wireless Devices :

Introduction, Trends in Mobility, Financial Frauds in Mobile and Wireless Computing, Security Challenges Posed by Mobile Devices, structure of Sim card, Sim card forensics, Sim card cloning, Organizational Measures for Handling Mobile, Mobile Apps and cybercrime, Whats app forward frauds, End point detection systems, End point detection systems in devices in organisation

(7)

(8)

(7)

Unit IV: Methods Used in Cybercrime:

Introduction, Proxy Servers and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horse and Backdoors, Steganography, DoS and DDoS attacks, SQL Injection, Buffer Overflow

Unit V: **Digital Forensics-**

Introduction to Digital Forensics, Forensics Software and Hardware, Evaluating computer forensic tools, Software tools and Hardware Tools, New Trends, Mobile forensics for android, Sample Case studies.

Unit VI: **Cyber Security Tools-**

wireshark, Nmap, Nessus, Ncat, Burp Suite, Snort, Nikto Carer Opprtunities and trends in Cyber Security.

Text Books:

- 1 Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Nina Godbole and Sunil Belapure, Wiley INDIA. ISBN 978-81-265-2179-1
- 2 Information Security & Cyber Laws By Sarika Gupta, Gaurav Gupta, Khanna Publication ISBN: 978-93-810-6824-3 2019
- 3 Computer Forensics and Investigations Bill Nelson, Amelia Phillips and Christopher Stuart Cengage learning. ISBN 978-81-315-1946-2

Reference Books:

- Intoduction to Cyber Security, Chwan-Hwa(john) Wu,J.David Irwin.CRC Press T&F Group 1
- 2 Eoghan Casey,"Digital evidence and computer crime Forensic Science, Computers and the Internet, ELSVIER, 2011 ISBN 978-0-12-374268-1

(6)

(8)

(6)

20OE801F Instrumentation in Food and Agriculture

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

(08)

(09)

Prerequisites: Basics of sensors and transducers, knowledge of Unit operations and basics of process control, PLC and pneumatic and hydraulic instrumentation

Course Objectives:

- 1 To know the scope of Instrumentation in agriculture field
- 2 To know greenhouse, food packaging automation schemes
- 3 Understand sensors used in agriculture field and weather monitoring stations
- 4 To get acquainted with food quality standards

Course Outcomes: The student will be able to

- 1 Identify the different unit operations, process control equipments involved in different types of process industries
- 2 Select appropriate measurement techniques for measurement of various process parameters related to soil, green house, Dam and agro-metrology
- 3 Analyse and develop various control loops for processes involved in various food processing plants
- 4 Assess various automation tools to develop automation strategy to Dam, Green house, food processing and packaging in accordance to various food standards

Unit 1: Process Control in Agriculture and Food Industries

Sensors in Agriculture (Hygrometers, Anemometers, fine wire thermocouple, etc), Sensors in Food (ph, temperature sensor for pasteurization, brix sensor, etc), Flow diagram of some continuous processes like sugar plant, dairy, juice extraction, etc & batch process (Fermentation)

Unit 2: Instrumentation in Irrigation and Green House

SCADA for DAM parameters & control, irrigation canal management systems, Auto drip & sprinkler irrigation systems

Green House Automation: Construction of green houses, Sensors for greenhouse, Control of ventilation, cooling & heating, wind speed, temperature & humidity

Unit 3: Instrumentation in Farm equipments, Food Safety and Sanitation (09)

Instrumentation for farm equipment: Implementation of hydraulic, pneumatic and electronic control circuits in harvesters cotton pickers, tractors, etc; Classification of pumps, pump characteristics, selection and installation.

Food safety standards (Food safety and standards bill 2005, Agmark, Bureau of Indian Standards, Codex Standards, recommended international code of hygiene for various products)

Sanitation regulatory requirements: Sanitation standards operating procedure (SSOP's), Sanitation performance standards (SPS), 11 principles of sanitary facility design, Sanitation best practices.

Unit 4: Automation in Food Packaging

Ware house management, Cold Storage Units, PLC and SCADA in food packaging

Unit 5:Smart Instrumentation in Agriculture and Food Industries(08)

Wireless sensors, Application of IOT in agriculture and food industries, application of Image processing in agriculture and food industries, application of robots in agriculture and food industries, Case studies.

Text Books:

- 1 D. Patranabis, "Principles of Industrial instrumentation", TMH (2010), ISBN-13: 978-0070699717
- 2 Michael. A.M, "Irrigation : Theory and Practice", Vikas Publishing House Pvt Ltd, Second edition (2008), ISBN-13: 978-8125918677
- 3 Curtis D. Johnson, "Process control and instrumentation technology", , 8th Edition, 2015, Person, ISBN: 9789332549456, 9332549451
- 4 Akalank Kumar Jain , Vidhi Jain "Food Safety and Standards Act, Rules & Regulations", Akalank Publications; 13th Edition edition (2015), ISBN-13: 978-8176393584

Reference Books:

- 1 Rosana G. Moreira, "Automatic Control for Food Processing Systems (Food Engineering Series)", Springer; 2001 edition (28 February 2001), ISBN-13: 978-0834217812
- 2 Bela G. Liptak , "Instrument Engineers' Handbook, Process Control and Optimization", CRC Press; 4 edition (29 September 2005), ISBN-13: 978-0849310812.
- 3 Robert H. Brown, "CRC Handbook of Engineering in Agriculture, Volume II: Volume 1 (C R C SERIES IN AGRICULTURE)", CRC Press; 1 edition (30 June 1988), ISBN-13: 978-084933862

(08)

200E801G Medical IoT

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisites:

Course Objectives:

- 1 To understand smart Objects and IoT Architecture
- 2 To learn sensor Interfacing
- 3 To learn IoT Protocols
- 4 To build simple IoT based Health care system

Course Outcomes:

- 1 Ascent the basic concepts of IOT in healthcare
- 2 Relate the existing hardware platforms and sensor interfaces for various healthcare-based Applications
- 3 Comprehend the ways of communication between the client and the server in IOT
- 4 Build various applications in healthcare using IOT based approach with appropriate case studies.

Unit 1: Medical Measurements

Cardiovascular system, respiratory system, nervous system etc. Measurement of Heart, Brain and Muscle activity using wearable sensors. Monitor health parameters like Blood Pressure, ECG, EMG, EEG, HR, RR, SPO2 etc.

Unit 2: Sensors & Smart Patient Devices

Role of Wearables, Challenges and Opportunities, Future of Wearables, Social Aspects, Wearable Haptics, Intelligent Clothing, Industry Sectors' Overview – Sports, Healthcare, Military, Environment Monitoring, Mining Industry, Public Sector and Safety.

Unit 3: Wearable mechatronics device

Accelerometers, Gyroscopic Sensors; In – Shoe Force and Pressure Measurement its applications. Physical Activity Monitoring: Human Kinetics, Cardiac Activity.

Cuffless Blood Pressure Monitor, Study of Flexible and Wearable Piezo resistive Sensors for Cuffless Blood Pressure Measurement, Wearable Pulse Oximeter, Wearable Sweat Analysis, Wearable Heart Rate Measurement.

Unit 4: Device Connectivity and Security / Biomedical Sensors with Internet (08) connectivity

Gateway, Embedded Systems for devices like RPi, Arduino, etc, Protocols as applied to medical devices.

Sensor interface: Temperature sensor, pressure sensor, optical sensor etc. Wireless body area network. IoT Privacy and Security.

(08)

(08)

(06)

Unit 5: Data Analytics for Medical Applications

Real Time Data Analytics, Continuous IoT Monitoring, Approach to Predict and Diagnosis of Heart and Chest diseases, Alzheimer, Diabetic Retinopathy etc. through data analytics.

Unit 6: IoT in Biomedical Applications - Case Studies

Secured architecture for IoT enabled Personalized Healthcare Systems, Healthcare Application development in mobile and cloud Environments.

Case Study1: Wireless Patient Monitor system; Design an IoT System for Vital Sign Monitors Weight measuring device, Blood pressure measuring device, ECG, Blood glucose measuring Heart rates measuring devices and Pulse Oximeters etc.

Case Study2: Wearable Fitness & Activity Monitor; Walking time measuring device ii. Stej counting device iii. Speed measuring device iv. Calorie spent measuring device v. Time spent in rest or sleeping measuring device.

Text Books:

- 1 Joseph D. Bronzino, "Handbook of Biomedical Engineering", 2nd edition –Volume II, CRC press, 2010.
- 2 Edward Sazonov and Michael R. Neuman, "Wearable Sensors -Fundamentals, Implementation and Applications", Elsevier Inc., 2014.
- 3 Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by CRC Press.
- 4 Arshdeep Bahga and Vijay Madisetti, "Internet of Things: A Hands-on Approach", Universities Press.

Reference Books:

- 1 Subhas Chandra Mukhopadhyay and Tarikul Islam, "Wearable Sensors Applications, design and implementation" IOP Publishing Ltd 2017.
- 2 Shantanu Bhattacharya, A K Agarwal, Nripen Chanda, Ashok Pandey and Ashis Kumar Sen, "Environmental, Chemical and Medical Sensors", Springer Nature Singapore Pte Ltd. 2018.
- 3 Dieter Uckelmann, Mark Harrison, Florian, "Architecting the Internet of Things", Springer.
- 4 "The Internet of Things: Key Applications and Protocols", by, Wiley
- 5 Olivier Hersent, David Boswarthick, Elloumi, Daniel Kellmereit, Daniel Obodovski, "The Silent Intelligence: The Internet of Things", Publisher: Lightning Source Inc; 1st Edition (15 April 2014). ISBN-10: 0989973700, ISBN-13: 978- 0989973700.

(06)

(06)

200E801H QUANTUM COMPUTING

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks

Credits: 3

Prerequisite: 20BS04 Physics, 20BS01 Linear Algebra & Univariate Calculus,20BS03 Multivariate Calculus

Course Objectives:

- 1 To give an introduction to quantum computation
- 2 To explain the basics of quantum mechanics
- 3 To analyze quantum circuits using qubit gates
- 4 To elaborate difference between classical and quantum information theory
- 5 To explain quantum algorithms
- 6 To explain noise and error correction

Course Outcomes:

After completion of the course, students will be able to

- CO1 Describe the basics of quantum computation
- CO2 Apply the concepts of quantum mechanics
- CO3 Design of quantum circuits using qubit gates
- CO4 Comparison between classical and quantum information theory
- CO5 Utilize quantum algorithms
- CO6 Apply noise and quantum error correction

Unit I: Introduction to Quantum Computation

Quantum bits, Bloch sphere representation of a qubit, multiple qubits.

Unit II: Background Mathematics and Physics

Hilbert space, Probabilities and measurements, Entanglement, Density operators and correlation, Basics of quantum mechanics, Measurements in bases other than computational basis.

Unit III: Quantum Circuits

Single qubit gates, Multiple qubit gates, Design of quantum circuits.

Unit IV: Quantum Information and Cryptography

Comparison between classical and quantum information theory, Bell states, Quantum teleportation, Quantum Cryptography, No cloning theorem.

(08)

(03)

Unit V: Quantum Algorithms

Real Time Data Analytics, Continuous IoT Monitoring, Approach to Predict and Diagnosis of Heart and Chest diseases, Alzheimer, Diabetic Retinopathy etc. through data analytics.

Unit VI: Noise and error correction

Graph states and codes, Quantum error correction, fault-tolerant computation.

Text Books:

- 1 Michael Nielsen and Isaac Chuang, **"Quantum Computation and Quantum Information"**, *CambridgeUniversity Press, UK*, (10th Edition), (2012).
- 2 Phillip Kaye, Raymond Laflamme and Michele Mosca,"An Introduction to Quantum Computing", *Oxford University Press*, *UK*, (1st Edition), (2007).

Reference Books:

- 1 N. David Mermin, **"Quantum Computer Science An Introduction"**, *Cambridge University Press*, UK, (1st Edition), (2007).
- 2 NosonYanofsky and MircoMannucci, "Quantum Computing for Computer Scientists", *Cambridge University Press*, (1st edition), (2008).

Online Resources:

1 NPTEL Course "Quantum Computing" https://onlinecourses.nptel.ac.in/noc19_cy31/

200E8011 RENEWABLE ENERGY SOURCES

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme: ISE: 50 Marks ESE: 50 Marks Credits: 3

Course Objectives:

To make students

- Understanding basic characteristics of renewable sources of energy and technologies for their 1 utilization.
- Learning engineering approach for renewable energy projects. 2
- For analyze energy potential of renewable sources of energy. 3

Course Outcomes:

Students will be able to

- Understand of different renewable sources of energy and technologies for their utilization. 1
- 2 Select engineering approach to problem solving when implementing the projects on renewable sources of energy.
- Undertake simple analysis of energy potential of renewable sources of energy. 3
- Describe main elements of technical systems designed for utilisation of renewable sources of 4 energy.

Solar Energy Unit/Module: 1

Solar potential, Solar radiation geometry, Solar radiation data, radiation measurement, Types of Solar Collectors, Collection efficiency, Applications of Solar Energy, Solar Desalination system, Solar dryer, Solar Energy storage. Solar PV Principle, Photo-cell materials, Applications.

Unit/Module: 2 Wind Energy

Wind parameters and wind data, Power from wind, Site selection, selection of components, Blade material, Wind energy conversion systems and their classification, Construction and working of typical wind mill, wind farms, present status.

Unit/Module: 3 **Biomass Technology**

Introduction to biomass technology, Combustion and fermentation, Biomass gasification, types of gasifire, Pyrolysis, various applications of Biomass energy, Bio-fuel types, and applications.

Unit/Module: 4 **Ocean – Tidal – Geothermal Energy**

Introduction to OTEC, open and closed cycle OTEC systems, Energy through waves and tides. Geothermal Energy, Energy generation through geothermal system, types of geothermal resources, Introduction of tidal systems, Environmental impact.

8 hours **CO:1**

7 hours CO: 2,3

7 hours

CO: 2.3

CO: 3 6 hours

Unit/Module: 5Hydrogen - Fuel Cell – Hybrid Energy System7 hoursCO: 4Introduction to hydrogen and fuel cell technology, applications of hydrogen and fuel cell technology.Need for hybrid energy systems, Case studies of hybrid energy system such as Solar-PV, Wind-PV,Micro hydel- PV, Biomass-Diesel systems.

Total Theory hours: 35 hours

Text Books:

- 1 Solar Energy by Dr. S.P.Sukhatme Tata McGraw Hill.
- 2 Non Conventional Energy Sources by G.D.Rai.- Khanna Publishers.
- 3 Energy Technology by S. Rao, Dr. B.B.Parulekar Khanna Publishers.

Reference Books:

- 1 Fan Lin You, Hong ye (2012), Renewable Energy Systems, Advanced conversion technologies and applications, CRC Press
- 2 John. A. Duffie, William A.Beckman (2013) Solar Engineering of Thermal processes, Wiley
- 3 Godfrey Boyle (2017), Renewable Energy, power for sustainable future, Oxford University Press.
- 4 A.R.Jha (2010), Wind turbine technology, CRC Press.

20OE 801J Soft Computing

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Course Objectives:

- 1. To understand basics in soft computing
- 2. To understand concepts of fuzzy logic and fuzzy sets
- 3. To understand supervised neural network architecture, training and testing algorithms and tools for the same
- 4. To understand unsupervised neural network architecture, training and testing algorithms
- 5. To understand concept for optimization, evolutionary programming and genetic algorithm and tools for the same
- 6. To understand concept swarm intelligent systems and tools for the same

Course Outcomes:

After completion of the course, students will be able to

- 1 Identify various soft computing and artificial neural network constituents to solve the problems in engineering domain
- 2 Experiment with fuzzy logic principles
- 3 Apply Supervised learning algorithms in artificial neural networks to simple real life problems
- 4 Apply Unsupervised learning algorithms in artificial neural networks to simple real life problems
- 5 Apply principles of genetic algorithm in solving engineering optimization problems
- 6 Apply principles of swarm intelligence in solving engineering optimization problems

Unit I: Introduction to Intelligent systems, soft tools and Artificial Neural (07) network

Soft computing constituents and conventional Artificial Intelligence, Artificial Neural network: definition, advantages of artificial neural network, Fuzzy Set Theory, Genetic algorithm, hybrid systems: neuro fuzzy, neuro genetic, fuzzy genetic, soft computing, Introduction to Artificial Neural Network: Fundamental concepts, basic models of artificial neural network, important terminologies of ANNs, McCulloch- Pitts Neuron, linear separability.

Unit II: Fuzzy logic and fuzzy sets

Introduction to fuzzy logic, fuzzy sets, fuzzy set operations, properties of fuzzy sets, classical relation, fuzzy relation, membership function, fuzzification, Methods of membership value assignments, lambda-cuts for fuzzy set, lambda-cuts for fuzzy relations, defuzzification. Introduction to tools for fuzzy logic using MATLAB/ Python

(07)

Unit III: Supervised Learning Networks

Introduction, Perceptron Networks: Perceptron learning rule, Architecture, perceptron training algorithm for single output classes, perceptron training algorithm for multiple output classes, perceptron network testing algorithm, Back Propagation Network: flowchart for training process, training algorithm, linear factors of back- propagation networks, number of training data, number of hidden layer nodes, testing algorithm of back- propagation networks. Introduction to tools for Supervised Learning Networks using MATLAB/ Python

Unit IV: Associative Memory Networks and Unsupervised Learning (07) Networks

Associative Memory Networks: Introduction, Training algorithm for pattern association: Hebb rule, Auto-associative Memory networks, Bidirectional associative memory: architecture, discrete bidirectional associative memory, Unsupervised Learning Networks: Introduction, Fixed wright competitive nets: max net, Kohonen Self organizing feature maps

Unit V: Genetic Algorithm

Introduction, Traditional Optimization and Search Techniques, biological background, genetic algorithms and search space, genetic algorithm vs. traditional algorithms, basic terminologies in in genetic algorithm, simple GA, operations in genetic algorithm: encoding- binary, octal, selection-Roulette wheel selection, random selection, crossover- single point cross over, two point crossover, mutation- flipping, interchanging, stopping condition for genetic algorithm flow, constraints in genetic algorithm. Introduction to tools for Genetic Algorithm using MATLAB/ Python

Unit VI: Swarm Intelligent Systems

Introduction, background of Ant Intelligent systems, Importance of the Ant Colony Paradigm, Ant colony systems, Development of Ant colony systems, Applications of Ant Colony Intelligence, the working of ant colony systems, practical swarm intelligent systems: The basic of PSO method, Characteristic features. Introduction to tools for Swarm Intelligent Systems using MATLAB/ Python

Text Books:

- 1 S.N. Sivanandam- "**Principles of Soft Computing**", Third Edition, Wiley India-ISBN 9788126577132, 20018
- B K Tripathy, J Anuradha, "Soft Computing- Advances and Applications", Cengage India, ISBN: 78-8131526194, 1st, 2018
- 3 P.Padhy, "Artificial Intelligence and Intelligent Systems" Oxford University Press, ISBN 10: 0195671546, 2005

(07)

(07)

(07)

Reference Books:

- 1 De Jong, **"Evolutionary Computation: A Unified Approach",** Cambridge (Massachusetts): MIT Press. ISBN: 0-262-04194-4. 2006
- 2 J. S. R. Jang, CT Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI PVT LTD, ISBN 0-13-261066-3. 2015
- 3 S. Rajsekaran and G.A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications", Prentice Hall of India, ISBN: 0451211243, 2003
- 4 1. Sinha N.K., "Soft Computing And Intelligent Systems: Theory And Applications", ISBN-13: 978-0126464900, Elsevier. 2007.

20OE 801K Software Testing and Quality Assurance

Teaching Scheme:

Lectures : 3 hours/week Tutorial : -- **Examination Scheme:**

In-Semester : 50 Marks End-Semester : 50 Marks Credit : 3

Prerequisites:

Course Objectives:

Familiarize students with

- 1. Testing strategies in projects.
- 2. Levels of testing strategies
- 3. Various quality assurance models
- 4. Automated Testing Tools

Course Outcomes:

Students should be able to

- 1. Explain different terminologies in software testing.
- 2. Apply appropriate testing technique based on the project scenario
- 3. Choose quality assurance models for the project
- 4. Make use of modern testing tools suitable for the project

Unit – I Fundamentals

Testing as a Process, Software testing principles, The tester's role in a software development organization, Origins of defects, Defect classes, Testing fundamentals, the defect repository and test design, Defect examples, Developer /Tester support for developing a defect repository. Process model to represent Different phases, Lifecycle models

Unit – II Levels of testing

Need for levels of testing, Unit testing, Integration testing, System Testing - Usability and Accessibility Testing, Configuration Testing, Compatibility Testing, Stress testing, Regression testing, Alpha, Beta and Acceptance testing.

Unit – III Testing techniques

Using White Box Approach to Test design - Static Testing, Structural Testing, Unit Functional Testing, Challenges in White box testing, Using Black Box Approaches to Test Case Design, Random Testing, Requirements based testing, Decision tables, State-based testing, Cause-effect graphing, Error guessing, Compatibility testing.

Unit – IV Fundamentals of software quality assurance

SQA basics, Components of the Software Quality Assurance System, software quality in business context, planning for software quality assurance, product quality and process quality, software process models, 7 QC Tools and Modern Tools.

Unit – V Quality assurance models

Models for Quality Assurance, ISO-9000 series, CMM, CMMI, Test Maturity Models, SPICE, Malcolm Baldrige Model- P-CMM, Clean-room software engineering, Defect Injection and prevention, Inspections & Walkthroughs, Case Tools and their effect on Software Quality.

7 Hours

7 Hours

7 Hours

7 Hours

7 Hours

Unit – VI Software test automation

Software Test Automation, Skills needed for Automation, Scope of Automation, Design and Architecture for Automation, Requirements for a Test Tool, Challenges in Automation Tracking the Bug. Combining Manual and Automated Testing

Text Books

- 1. Srinivasan Desikan, Gopalaswamy Ramesh, "Software Testing: Principles and Practices", Pearson
- 2. Ilene Burnstein, "Practical Software Testing", Springer International edition

Reference Books

- 1. Paul C. Jorgensen, "Software Testing: A Craftsman's Approach", Auerbach Publications
- 2. William Perry, "Effective Methods of Software Testing", Wiley Publishing, Third Edition
- 3. Stephen Kan, "Metrics and Models in Software Quality", Addison Wesley, Second Edition
- 4. Watts S Humphrey, "Managing the Software Process", Pearson Education Inc.

7 Hours

20OE 802A Applied Statistics with R programming

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme: In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisites: Mathematics

Course Objectives:

- Familiarize students with
- 1 Fundamentals in Statistics
- 2 Evaluation and Interpretation of applied statistics
- **3** Hypothesis Test
- 4 R programming used in statistical analysis

Course Outcomes:

Students should be able to

- Apply probability for statistical analysis. 1
- 2 Draw inferences from statistical analysis of data
- Apply statistical methods and hypothesis tests on data 3
- 4 Explain Multivariate Analysis

Unit I: **Probability**

Introduction, conditional probability, Bayes Theorem and independence, random variable and Probability distribution, normal distribution.

Unit II: **Basic statistical measures**

Introduction to statistics, type of data, processing the data, classification, graphical representation. Introduction Measures of central Tendency: Arithmetic Mean, Weighted Arithmetic Mean, Median, mode, Measurement of variation: Quartile, Average and Standard Deviations, Coefficient Variation, Measurement of skewness

Case Study with R programming

Unit III: **Analysis of Variance**

Normal distribution, evaluating normal distribution, Binomial distribution, confidence Intervals, central limit Theorem, ANOVA, Completely randomized design, Latin square Design, Duncan's Multiple Range Test

Case Study with R programming

Unit IV: **Types of hypothesis**

Introduction, types of hypothesis, Tests of hypothesis concerning means, hypothesis concerning proportions, Hypothesis concerning variations (Chi-square and F-tests), Chi square test for checking independence of categorized data, goodness of Fit Test Case Study with R programming

9 Hours

9 Hours

8 Hours

7 Hours

9 Hours

Unit V: Multivariate Analysis

Correlation: Introduction, types of correlations, Correlation Analysis, correlation coefficients, Regression: Introduction, Linear Regression, Regression analysis, regression coefficients. MANOVA, Discrimination Analysis, Factor Analysis, Principle Component Analysis and Independent Component Analysis Case Study with R programming

Text Books:

- 1 S.P. Gupta, "Statistical Methods", Sultan Chand and sons Publication, 41st Edition.
- 2 B.L. Agarwal, "Basic Statistics", New Age Publication, 9th Edition
- 3 A. Papoulis, S.U. Pillai, "Probability Random Variables and Stochastic Processes", Tata McGraw Hill, (4th Edition)

Reference Books:

- 1 S. M.Ross, "Introduction to Probability and Statistics for Engineers and Scientists", Elsevier Publication, 5th Edition
- 2 Piegorsch W.W, "Statistical Data Analytics", Wiley Publication.
- 3 E. Rukmangadchari, E.K.Reddy, "Probability and Statistics", Pearson India Pvt.Ltd.,1st Edition
- 4 Rohatgi A.K. Md e. Saleh, "Introduction to Probability and Statistics", Wiley Publication Pvt. Ltd. 3rd Edition.

Web References

- 1 NPTEL NOC: Descriptive Statistics with R software, Prof. Shalabh, IIT Kanpur,
- 2 NPTEL NOC: Applied Statistics and Econometrics, Prof. Mukherjee, IIT Kanpur

20OE802-B Automobile Engineering (AE)

Teaching Scheme Lectures: 3 Hours / Week **Examination scheme:** ISE: 50 Marks ESE: 50 Marks Credits: 3

Course Objectives:

To make students

- 1 To study layout of the vehicles.
- 2 To understand function of various components of automotive systems
- 3 To understand use of alternative fuels for vehicle.

Course Outcomes:

Students will be able to

- 1 Identify different layouts of automobile vehicle and engine auxiliary systems.
- Explain latest transmission, steering, braking and suspension systems in vehicle. 2
- Explain EV, HEV, latest trends in AI technologies 3
- 4 Understand energy sources, current emission norms and emission control systems.

Unit/Module: 1 Vehicle Structure and Engine auxiliary systems

Vehicle construction and different layouts, chassis, frame and body, components of engine. Electronically controlled gasoline injection system for SI engines. Electronically controlled diesel injection system, electronic ignition system. Introduction to Vehicle Maintenance and Servicing.

Unit/Module: 2 Transmission Systems

Introduction to transmission system, Automatic transmission system (fluid coupling, clutch less drive, fluid flywheel - torque converter), Semi-automatic transmission, continuously variable transmission (CVT), dual clutch hybrid transmission

Unit/Module: 3 Steering, Brakes and Suspension Systems 6 hours CO: 2

Introduction to Steering geometry and its function, Power Steering. Introduction to suspension system, Active and passive Suspension. Introduction to Braking Systems, Regenerative breaking, Anti-lock Braking System (ABS), EBS and Traction Control.

6 hours

6 hours

CO: 2

CO: 1

CO: 3

6 hours

Unit/Module: 4 Electric and hybrid vehicles

Concept of electric and hybrid vehicle, EV and HEV fundamentals, architecture of EV and HEV power train, drives and energy sources in EV and HEV, Artificial intelligence technologies such as Autonomous Vehicles, computer vision assist drivers to improve safety, improve services such as vehicle inspection or insurance. Role of IoT to secure communication between vehicles as well as vehicles and infrastructure components

Unit/Module: 5 Modern Energy Sources and optimizing supply chain 6 hours CO: 4 Compressed Natural Gas (CNG), Liquefied Petroleum Gas (LNG), Bio-fuels, lithium-ion battery, hydrogen fuel cell in Automobiles, Introduction to Optimization of Supply Chain in Automotive Industry

Unit/Module: 6 Emission control in automobiles 6 hours CO: 4

Emission and Fuel Roadmap Euro 6 / BS V norms (proposed 2020-21), Effect of car emissions on human health and the environment. Exhaust gas re-circulation (EGR) and Engine emission control (three-way catalytic converter system SCR and particulate filter).

Text Books:

- 1 Kirpal Singh, Automobile Engineering Vol 1 and 2, Standard Publishers, 7th Edition, 1997
- 2 M. Chris and M. A. Masrur, Hybrid Electric Vehicles, Wiley Publications, 2nd Edition, 2017
- 3 Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press

Reference Books:

- 1 K. K. Jain and R. B. Asthana, Automobile Engineering, Tata McGraw Hill Publishers, New Delhi, 1999.
- 2 Barry Hollembeak, "Automotive Electricity and Electronics" Cengage Learning, Cliftorn Park, USA 2007.
- 3 Dr. K. R. Govindan, Automobile Engineering, Anuradha Publications, Chennai, 2013.
- 4 Joseph Heiner, Automotive Mechanics, Litton Education Publishing Ins., New York, 1999.
- 5 Angelin, Automotive Mechanics, Tata McGraw Hill Pub. Comp. Ltd., 10th Edition, 2004.
- 6 Josep Aulinas, Hanky Sjafrie, AI for Cars, Chapman and Hall/CRC Press, 1st Edition.

200E802C AUTONOMOUS ROBOTS

Teaching Scheme

Lectures: 3 Hours / Week

Prerequisite: 20BS01Linear Algebra and Univariate Calculus, 20ES01: Basic Electrical and Electronics Engineering

Course Objectives:

- 1 To explain fundamentals of robotic system
- 2 To introduce kinematics, dynamics and control for robotics systems
- 3 To introduce trajectory planning for motion
- 4 To describe application of robots in automation

Course Outcomes:

After completion of the course, students will be able to

- CO 1 Explain and classify different components used in developing autonomous robot
- CO2 Select sensors, actuators and grippers for autonomous robot
- CO3 Apply formulations to obtain kinematics, dynamics and trajectory planning of autonomous robot
- CO4 Develop path planning and navigation algorithm for autonomous robot
- CO5 Design robot for automation

Unit I: Introduction to Robotics

Definition of robotics, Types of robots, Components of Robot system, Classification of robots, Robot architecture, Robot locomotion, Specification of robot, Robot sensors for position, Acceleration sensors, Proximity, Velocity sensors, Force sensors, Tactile sensor, Camera and robot vision, Actuators and end effectors.

Unit II: Introduction to Mechanics of Robotic Arm

Position and orientation description, Coordinate transforms, Homogeneous transform, Denavit and Hartenberg (DH) parameters, Forward and inverse kinematic analysis, Dynamics and inverse Dynamics of robots, Newton–Eller formulation, Trajectory and Path planning, Application of robotic arm.

Unit III: Mobile robot Kinematics and Dynamics

Forward and inverse kinematics, holonomic and nonholonomic constraints, Kinematic models of simple car and legged robots, Dynamic simulation of mobile robots.

Examination scheme: In Semester: 50 Marks End Semester: 50 Marks Credits: 3

(**10**)

(08)

Arte rete anemenen MKSSS's Cumminus

(10)

(06)

(08)

Unit IV: Localization

Odometric position estimation, Belief representation, Probabilistic mapping, Markov localization, Bayesian localization, Kalman localization, Positioning beacon systems.

Unit V: Introduction to Planning and Navigation

Path planning algorithms based on Simultaneous Localization and Mapping (SLAM) algorithm, A-star, D-star, Voronoi diagrams, Probabilistic Road Maps (PRM), Rapidly exploring Random Trees (RRT), Markov Decision Processes (MDP), Stochastic Dynamic Programming (SDP).

Text Books:

- 1 R. Siegwart, I. R. Nourbakhsh, "Introduction to Autonomous Mobile Robots", *The MIT Press*, (2nd Edition), (2011).
- 2 Francis X. Govers, "Artificial Intelligence for Robotics", *Packt Publishing Ltd.*, *United Kingdom*, (1st Edition), (2018).
- 3 Robin R. Murphy, "Introduction to Artificial Intelligence for Robotics", *The MIT Press*, (2nd Edition), (2000).
- 4 S. K. Saha, "Introduction to Robotics", *Tata McGraw Hill*, (2nd Edition), (2014).

Reference Books:

- 1 K. S.Fu, R. C. Gonzalez, C. S. G. Lee, "**Robotics Control, Sensing, Vision and Intelligence**", *Tata McGraw Hill*, (2nd Edition), (2008).
- 2 Robert J. Schilling, **"Fundamentals of Robotics- Analysis and Control"**, *Prentices Hall India*, (1st Edition), (2008).

Online Resources:

1 NPTEL Course **"Wheeled Mobile Robot"** https://nptel.ac.in/courses/112/106/112106298/

(06)

MKSSS's Cummins College of Engineering for Women, Pune (An Autonomous Institute Affiliated to SavitribaiPhule Pune University)

20OE802D Building Automation and Energy Audit

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme: In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisites: Basics of Electronics and Instrumentation

Course Objectives:

- 1 To understand Need and Applications Building automation systems.
- 2 To understand the working of various Building automation components.
- 3 To Select and Implement Building automation with various applications.

Course Outcomes: The student will be able to

- 1 Investigate the system requirements for developing building automation systems
- 2 Compare and choose the suitable building automation systems for the applications
- 3 Design building automation system for required application
- 4 Evaluate the performance of the designed building automation system

Unit 1: Fire Alarm Systems I

Introduction: to BAS, Need and Applications of BAS, Block diagram of BAS.FAS: Need and Applications of FAS, Types of FAS, Block diagram of FAS, Fire, Fire Development Stages, Fire Signatures, Initiation Devices, Notification Appliances, IDC Placements, NAC Placements, Fire Suppression: Fire Extinguishers & Its Classification, Fire Suppression Systems.

Unit 2: Fire Alarm Systems II

IDC, NAC, SLC, FAS Wiring Standards, FAS Communication Protocols, Voltage Drop Analysis, Battery Capacity Analysis, Cause & Effect Matrix.

Unit 3: Access Control Systems

Introduction to Security Systems, Types of Security systems, Access Control Systems: Introduction, Applications, Concept, Generic Model, Components, Card Technologies, Communication Protocols for ACS, Biometrics for ACS, CCTV System Types: CCTV Components, Digital Video Management System

Unit 4: HVAC- Air Systems

Human Comfort Parameters and Air Properties Need of HVAC System, HVAC Block Diagram. AHU: Concept, Working, AHU Functions, AHU Components: Dampers, Filters, Cooling coil, Heating coil, etc., AHU Configurations, AHU Locations, AHU Terminal Units: CAV, VAV, Measurement and Control Loops for Air Systems.

(08)

(06)

(08)

Andre statistics and statistics

Unit 5: HVAC- Water Systems

Cold Water System: Refrigeration Cycles, Chillers, Cooling Towers, Types of chilled water system, Concept of Free Cooling : Direct Waterside, Series Waterside, Parallel Waterside. Hot Water Systems: Heating Circuits, Boilers, Types of Boilers, Heat Exchangers: Steam Input and Hot Water Input, Solar Hot Water System, Measurement and Control Loops for Water Systems.

Unit 6: Building Energy Management System

Overview of Building Energy Management Systems, BEMS Control systems overview, Benefits of BEMS, Energy System Monitoring, Application of Energy Efficient Strategies, Effective Energy management, Computerized Energy Management Systems.

Text Books:

- 1 Robert Gagnon, Design of Special Hazards and Fire Alarm Systems
- 2 Damjanovski, Vlado, CCTV, Butterworth-Heinemann, 3rd ed
- 3 Benantar M., Access Control System
- 4 Montgomery R, Fundamentals of HVAC Control Systems, Elsevier Publications
- 5 Roger W. Haines "HVAC Systems Design Handbook", Fifth Edition
- 6 James E. Brumbaugh "HVAC Fundamentals", volume 1 to 3
- 7 "Basics of Air Conditioning" ISHRAE, Indian Society of Heating, Refrigerating & Air Conditioning Engineers (product code: B0004 for online shopping)

Reference Books:

- 1 "All About AHU's", ISHRAE. Indian Society of Heating, Refrigerating & Air Conditioning Engineers (product code: B0005 for online shopping)
- 2 "Chillers Basics", ISHRAE. Indian Society of Heating, Refrigerating & Air Conditioning Engineers (product code: B0009 for online shopping)
- 3 "HVAC Handbook Part-1", Indian Society of Heating, Refrigerating & Air Conditioning Engineers
- 4 "Handbook Industrial Ventilation Application", 2004, Indian Society of Heating, Refrigerating & Air Conditioning Engineers

(07)

(07)

20OE 802E Data Analysis and Visualization

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme: In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisites:

- 1 Basic Mathematics
- 2 Basics of Python Programming

Course Objectives:

To facilitate the learners

- 1 To understand the data analytics and visualization as well as the statistics behind it.
- 2 To understand and analyze the machine learning methods used in data analysis
- 3 To understand the modern tools used for data analytics and visualization.

Course Outcomes:

By taking this course, the learner will be able to

- 1 Develop the knowledge of data analysis and the statistical tools used for analysis
- 2 Identify the relevant data analysis method for a real time application
- 3 Select the appropriate data visualization method for the application in hand
- 4 Understand recent trends in data analysis and visualization

Unit 1: INTRODUCTION TO DATA ANALYTICS

Introduction to Data, Data types and their relationships, Data Analytics workflow, Types of analysis Applications.

Unit 2: BASIC DATA ANALYTICS

Statistical analysis, Attribute correlation, Regression analysis, Dimensionality reduction, Feature extraction and selection, Time series prediction, Hypothesis Analysis Case study, Python based examples

Unit 3: MACHINE LEARNING FOR DATA ANALYTICS

Data analysis methods used for Clustering, Classification, Regression, Outlier Detection, Time Series Prediction, Anomaly Detection, Association, Recommendation Systems Case study, Python based examples

Unit 4: DATA VISUALIZATION

Purpose and types of Visualization, Graphical Representation, Multidimensional Visualization, Handling data Cleaning, data reduction for visualization, Sorting and Scaling, Multivariate Glyphs Case study, Python based examples

MKSSS's Cummi College of Engine For Women

(08)

(06)

(10)

(10)

Unit 5: RENDS IN DATA ANALYSIS AND VISUALIZATION

(08)

Deep Learning for Data Analysis, handling of small and Big Data, Storytelling and Data Visualization Dashboards

Case study, Python based examples, Demo with tool like Tableau.

Text Books:

- 1 Dr. Anil Maheshwari, 'Data Analytics', McGraw Hill Education (India) Pvt. Ltd. (2017)
- 2 Dr. Ossama Embarak, 'Data Analysis and Visualization Using Python', aPress (2018)

Reference Books:

- 1 Wes McKenny, 'Python for Data Analysis', O'Reilly (2013)
- 2 Han and Kamber, **'Data Mining: Concepts and Techniques'**, The Morgan Kaufmann Series in Data Management Systems (2011)
- 3 Christopher Bishop, 'Pattern Recognition and Machine Learning', Springer (2010)
- 4 Edited by Chun-houh Chen, Wolfgang Härdle and Antony Unwin, 'Handbook of Data Visualization', Springer (2008)

Web References:

- 1 Academic use of Tableau https://www.tableau.com/academic/teaching
- 2 NPTEL Courses
 - a Introduction to Data Analytics <u>https://nptel.ac.in/courses/110/106/110106064/</u>
 - b Data Analytics with Python <u>https://nptel.ac.in/courses/106/107/106107220/</u>
 - c Python for Data Science https://nptel.ac.in/courses/106/106/106106212/
 - d Introduction to Learning Analytics <u>https://nptel.ac.in/courses/127/101/127101012/</u>
 - e Data Analytics with Python <u>https://onlinecourses.nptel.ac.in/noc20_cs46/preview</u>

20OE 802F Data Science Using Python

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme: In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisites:

- 1 Basic Mathematics
- 2 Basics of Python Programming

Course Objectives:

To facilitate the learners

- 1 To understand the data analytics and visualization as well as the statistics behind it.
- 2 To understand and analyze the machine learning methods used in data analysis
- 3 To understand the modern tools used for data analytics and visualization.

Course Outcomes:

By taking this course, the learner will be able to

- Develop the knowledge of data science. 1
- 2 Identify the relevant Python method used in data science.
- 3 Select the appropriate data operation method for the application in hand.
- 4 Understand recent trends in data science and analysis.

INTRODUCTION TO DATA Unit 1:

Introduction to Data, Data types and their relationships, Handling different types of data using Python, Handling numeric and categorical data using Python

Unit 2: **BASIC DATA Processing using NumPy, Pandas**

Statistical operations, data cleaning, missing data, indexing, slicing, iterating, attribute selection, dimensionality reduction, Handling tabular data, time series Case study, Python based examples

MACHINE LEARNING using Sci-Kit, Tensorflow - I Unit 3: (08)

Clustering, Classification, Regression, Outlier Detection Case study, Python based examples

Unit 4: MACHINE LEARNING using Sci-Kit, Tensorflow- II (08)

Time Series Prediction, Anomaly Detection, Association, Recommendation Systems Case study, Python based examples

(06)

 $(\mathbf{08})$

Unit 5:REGRESSION ANALYSIS AND PREDICTIVE ANALYSIS(06)

Introduction to types of analysis - Predictive, descriptive and decision based, Regression analysis, types - linear, logistic, ridge, lasso

Unit 6: DATA VISUALIZATION AND GRAPHICS USING Matplotlib / (06) Seaborn

Basic visualization plots - Area, histogram, bar, Specialized plots - pie, box, scatter, bibble, Waffle, Word clouds, Seaborn, Regression plots

Introduction to Folium, maps with markers, choropleth maps, dashboards

Text Books:

- 1 Aurélien Géron, 'Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems', O'Reilly Media (2017)
- 2 Samir Madhavan, 'Mastering Python for data science', Packt (2015)
- 3 David Beazley, 'Python CookBook', O'reilly (2013)
- 4 Dr. Ossama Embarak, 'Data Analysis and Visualization Using Python', aPress (2018)

Reference Books:

- 1 Wes McKenny, 'Python for Data Analysis', O'Reilly (2013)
- 2 Han and Kamber, **'Data Mining: Concepts and Techniques'**, The Morgan Kaufmann Series in Data Management Systems (2011)
- 3 Christopher Bishop, 'Pattern Recognition and Machine Learning', Springer (2010)
- 4 Edited by Chun-houh Chen, Wolfgang Härdle and Antony Unwin, 'Handbook of Data Visualization', Springer (2008)

Web References:

- 1 Academic use of Tableau https://www.tableau.com/academic/teaching
- 2 NPTEL Courses
 - a Python for Data Science https://nptel.ac.in/courses/106/106/106106212/
 - b Introduction to Data Analytics <u>https://nptel.ac.in/courses/110/106/110106064/</u>

20OE802G Industrial Drives and Control

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisites:

Course Objectives:

- 1 To evaluate and select a suitable drive for a particular application.
- 2 To analyse the basic drive system dynamics
- 3 To develop the basic design of an electric drive system.

Course Outcomes:

- Selection of appropriate drive for the given application 1
- 2 Selection of suitable control system scheme along with the interlocking for given application
- 3 Analysis of the control drive dynamics for the desired drive system
- 4 Design of the total electric drive system based on desired application

Unit 1: **Introduction to Industrial Drives**

Concept of electric drive, Power modulators, Motors used in drives, types of loads choice of drives, classification of drives Multi quadrant operation of Drives.

Unit 2: **Introduction to Control Systems**

Open and closed loop systems with examples, automatic control, speed control of motors

Unit 3: **Electrical Control of Machines**

Manual control – Magnetic control – Semi-automatic and Automatic control of Modern machinery - Development of Control circuits-Two wire and Three wire control - Remote control -

Unit 4: **Interlocking of drives**

Control circuit components – Symbols for control components–Fuses, Switches and Fuse Switch units.

Unit 5: **Dynamics and Control of Electric Drives**

D.C. motor drives, Induction motor drives, Synchronous and Brushless D.C. motor drives.

(07)

(07)

(08)

(08)

(06)

Unit 6: Industrial process and drives

(06)

Process flow diagram of paper mill, cement mill, sugar mill, steel mill, Hoists and cranes, centrifugal pumps and compressors, solar powered pump drives, selection of drives for the above processes

Text Books:

- 1 Electrical Motor Drives, R. Krishnan [PHI-2003]
- 2 Electric Drives, Vedam Subrahmaniam [TMH-1994]
- 3 Industrial Drives and Control, Sandeep M. Chaudhari, Nilesh R. Ahire [Nirali Prakashan]

Reference Books:

- 1 Control of Electric Drives, W. Leonard, [Springer- 2001]
- 2 Electrical Drives, Second Edition, S.A. Nasar, Boldea [CRC Press 2006]

20OE802H Smart Sensors and Systems

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme: In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisites:

Course Objectives:

- 1 Theoretical understanding of various physical phenomena behind the operation of different types of sensors and microsystems
- 2 Overview of micro/nano fabrication process
- 3 Develop a complete sensor or sensor system, MEMS device or microsystem

Course Outcomes:

- 1 Selection of suitable sensor along with the associated electronics and fabrication process for given application
- 2 Selection of appropriate smart sensors for the desired application in the field of Automobile, Biomedical, Military, Space and Défense.
- 3 Design of application-based sensors in the field of Military, Défense, Spacecraft and environment
- 4 Analysis of the system designed for applications in the field of Biomedical and Automobile

Unit 1: Introduction to Smart Sensors and Systems

Principles of Sensing, Classification and Terminology of Sensors. Introduction to micromachining - Fabrication and miniaturization techniques

Digital Signal Controllers (Microcontrollers and Digital Signal Processors) for Smart sensors Key features, Certain case studies - for eg: temperature, fingerprint recognition

Unit 2: Microfabrication process

Fabrication and miniaturization techniques, Steps involved in fabrication

Unit 3: Smart sensors in Biomedical field

Bio-analytical [sample preparation and detection of compound] sensors & systems, Transduction modes & classifications,

Hall Effect sensors and associated signal conditioning circuits, Sensors for displacement (linear and angular), velocity, acceleration, force, torque, vibration and shock measurements. Sensor measurements for conductivity and viscosity. Electrochemical transducer in Biology and medicine Biochemical Transducer, Enzyme-based electrochemical biosensors, electronic tongue, few related Case studies

(08)

(08)

(07)

Unit 4: Smart sensors in Automobile industry

Introduction to Modern Automotive Systems and need for electronics in Automobiles, Sensors for vehicle body management, Sensors for automotive vehicle convenience and security systems, Sensors for chassis management, Powertrain sensors, Air Bag and Seat Belt Pre tensioner Systems, Case studies explaining the Modern Trends and Technical Solutions, Related communication systems

Unit 5:Smart sensors related to Environment and in Spacecraft(06)

Human Toxicology Ecotoxicology, W ater and air pollution sources E-nose for Sensitive and Selective Chemical Sensing, Chemical sensors, Ocean environment Smart sensors in spacecraft - in monitoring applications, Smart Instrumentation Point Bus (SIP),

Solid state micro-gyroscopes, related Case studies

Unit 6: Smart sensors in Military and Defence

Types of sensors (Accelerometers, Inertial Sensors, Pressure Sensors, Force Sensors, Motion Sensors, Gyroscopes, Temperature Sensor and Others), Device-based Sensor, Clothing-based Sensor, Application based sensors - Wrist Wear, Foot Wear, Eye Wear, Body Wear and Neck Wear, intelligent sensor technology for surveillance and electronic intelligence, Case studies, related communication systems

Text Books:

- 1 Understanding Smart Sensors, Randy Frank [Artech House, Boston London]
- 2 Smart Sensors for Environmental and Medical Applications, Hamida Halilil, Hadi Heidari [Wiley]
- 3 Smart Sensors and MEMS: Intelligent Devices and Microsystems for Industrial Applications, S Nihtianov, Antonio Luque [Science Direct]

Reference Books:

- 1 Smart Sensors and Systems, Lin, Y.-L., Kyung, C.-M., Yasuura, H., Liu, Y. [Springer]
- 2 Smart Sensor Systems, Gerard Miejer [Wiley]

(06)

(07)

200E802I Wireless Networks

Teaching Scheme

Lectures: 3 Hours / Week

Examination scheme:

In Semester: 50 Marks End Semester: 50 Marks Credits: 3

Prerequisites: Nil

Course Objectives:

- 1 To explain the importance of wireless communication and multiple access techniques
- 2 To elaborate the behavior of communication system for indoor and outdoor wireless networks
- 3 To introduce 3G, 4G cellular network components and 5G future wireless network
- 4 To explain MIMO technology
- 5 To introduce visible light communications

Course Outcomes:

After completion of the course, students will be able to

- CO1 Explain fundamentals of wireless communication and multiple access techniques
- CO2 Analyze the behavior of communication system for indoor and outdoor wireless networks
- CO3 Apply 3G, 4G cellular network standards and describe 5G future wireless network
- CO4 Interpret MIMO technology its advantages and limitations
- CO5 Explain LiFi networking and technology for indoor network access

Unit I: Introduction to wireless communication

Fundamentals of Wireless Communication: Advantages, Limitations and Applications, Frequency Spectrum, Radio and Infrared Frequency Spectrum, Wireless Media, Spread spectrum, Multiple access technique: TDMA, CDMA, FDMA, CSMA, OFDMA.

Unit II: Wireless indoor and outdoor networks

WLAN, WiFi, Bluetooth, Zigbee, Ultra Wideband communication, Infrared, UHF narrowband, WiMax, Limitation of indoor networks.

Unit III: Cellular Network

Spectrum reuse and re-framing, Cell cluster concept, Co-channel and adjacent channel interference, Cell site, call blocking and delay, Channel allocation strategies, 3G and 4G standard.

Unit IV: Future Wireless networks

Introduction to 5G, Modulation techniques for 5G, Architecture, MIMO, Massive MIMO, Limitations and applications.

The series assessed

(08) Ero

(08)

(08)

(10)

Unit V: Visible Light Communications

(08)

LiFi Technology, LiFi Networking, LiFi technology for indoor network access, Applications.

Text Books:

- 1 T. Rappaport, "Wireless Communications Principles and Practice", *Prentice Hall*, (2ndEdition), (2011).
- 2 Vijay Garg, "Wireless Communications and networking", *Elsevier*, (1st Edition), (2007).
- 3 Jonathan Rodriguez, "Fundamentals of 5G Mobile Networks", *Wiley*, (1st Edition),(2015).
- 4 Mohamed Gado, Doaa Abd El-Moghith, "**Li-Fi Technology for Indoor Access**", *LAMBERT Academic Publishing*, (1st Edition), (2015).

Reference Books:

- 1 Erik Dahlman, Stefan Parkvall, Johan Skold and Per Beming, "**3G Evolution HSPA** and LTE for Mobile Broadband", *Academic Press*, (2ndEdition), (2008).
- 2 Anurag Kumar, D.Manjunath, Joy kuri, "Wireless Networking", *Elsevier*, (1st Edition), (2011).
- 3 Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", *Pearson Education*, (1st Edition), (2013)
- 4 Aditya K. Jagannatham, "**Principles of Modern Wireless Communications Systems**", *McGraw Hill Education (India) Private Limited*, (1st Edition), (2016).

Online Resources:

- 1 NPTEL Course on "Introduction to Wireless and Cellular Communications", https://nptel.ac.in/courses/108/106/106166167/#
- 2 NPTEL Course on "Advanced 3G and 4G Wireless Mobile Communications", https://nptel.ac.in/courses/117/104/117104099/