Autonomous Program Structure of Second Year B. Tech. Third Semester (Information Technology)

Academic Year: 2021-2022 Onwards

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Scheme Hours /Week</th>
<th>Examination Scheme</th>
<th>Total Marks</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lecture</td>
<td>Tutorial</td>
<td>Practical</td>
<td>In Sem</td>
</tr>
<tr>
<td>20IT 301</td>
<td>Data Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>20IT 302</td>
<td>Discrete Mathematics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>20IT 303</td>
<td>Digital Electronics and Computer Architecture</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>20IT 304</td>
<td>Network Fundamentals</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>20HS 301</td>
<td>Universal Human Values - 2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>20IT 301L</td>
<td>Data Structures Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>20IT 303L</td>
<td>Digital Electronics and Computer Architecture Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>20IT 305L</td>
<td>Object Oriented Analysis and Design Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>20AC 301</td>
<td>Audit Course</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
<td>3</td>
<td>11</td>
<td>325</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td>28</td>
<td></td>
<td></td>
<td>650</td>
</tr>
</tbody>
</table>
20IT 301 Data Structures

Teaching Scheme:
- Lectures: 3 hours/week
- Tutorial: --

Examination Scheme:
- In-Semester: 50 Marks
- End-Semester: 50 Marks
- Credit: 3

Prerequisites: Fundamentals of Programming Language

Course Objectives:
Familiarize students with
1. Linear & non-linear data structures
2. Iterative & recursive function implementations
3. Symbol table & hashing techniques
4. Algorithm analysis using time & space complexity

Course Outcomes:
Students should be able to
1. Apply appropriate programming language constructs to develop logical steps for solving a real world problem.
2. Analyze algorithmic complexities of an algorithm.
3. Select appropriate linear & nonlinear data structure to solve a given problem.
4. Apply different hashing techniques.

Unit – I Introduction to Data Structures
5 Hours
Concept of problem solving, Revision: Concept of data types, operators, control structures, functions, arrays and collections.
Introduction to Data Structures: Types of data structures, Abstract Data Types

Unit – II Introduction to Analysis of Algorithms
7 Hours

Unit – III Linked List
7 Hours
Concept of linked organization, singly linked list, doubly linked list, circular linked list. Linked list as an ADT. Representation and manipulations of polynomials using linked lists, comparison of a sequential and linked memory organization, concept of Generalized Linked List, polynomial representation using GLL.

Unit – IV Stack & Queue
8 Hours
Concept of stack, stack as ADT, Implementation of stack using array and linked organization, stack as data structure, use of stack- Recursion, expression conversion & evaluation
Concept of queues as ADT, Implementation using array and linked organization. Priority queue.
Unit – V Trees 8 Hours

Unit – VI Hash Tables 7 Hours
Symbol Table: Symbol Table, Huffman’s algorithm
Hash table: hashing function, collision resolution techniques- linear probing, rehashing, chaining without replacement and chaining with replacement.

Text Books
2. Cay S. Horstmann, “Big Java: Early Objects”, John Wiley

Reference Books
20IT 302 Discrete Mathematics

Teaching Scheme:
- Lectures: 3 hours/week
- Tutorial: 1 hour/week

Examination Scheme:
- In-Semester: 50 marks
- End-Semester: 50 marks
- Credits: 4

Prerequisites: Basic Mathematics

Course Objectives:
Familiarize students with:
1. Sets and propositions to gain knowledge to formulate and solve problems.
2. The concept of relations and functions.
3. Graph and Tree terminologies and models to be applied in real life problems.
4. The basics of algebraic structures and its applications along with number theory.

Course Outcomes:
Students should be able to:
1. Analyze logical propositions.
2. Prove mathematical theorems.
3. Apply algebraic techniques on discrete mathematics and algorithms.
4. Evaluate the combinatorial problems.

Unit I: Sets and Propositional Logic
- Sets, Combinations of Sets, Venn diagram, Finite and Infinite Sets, Countable Sets, Multisets, Principle of Inclusion and Exclusion, Mathematical Induction.
- Propositions, Logical Connectives, Conditional and Biconditional Propositions, Logical Equivalence, Validity of Arguments by using Truth Tables, Predicates and Quantifiers, Normal forms. Applications of Sets and Propositions.

Unit II: Relations and Functions
- Relations and their properties, n-ary relations and their applications, representing relations, closures of relations, equivalence relations, partial orderings, Lattices, Chains and Antichains.
- Functions: Functions, Composition of Functions, Invertible Functions, and Pigeonhole Principle.

Unit III: Graphs
- Graphs and Graph Models, Graph Terminology and Special Types of graphs, Representing Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Shortest-Path Problems, Planar Graphs, Graph Coloring.

Unit IV: Trees
Unit V: Groups and Rings 7 Hours
Group Theory: Groups, subgroups, generators and evaluation of powers, cosets and Lagrange’s theorem, permutation groups and Burnside’s theorem, isomorphism and automorphisms, homomorphisms and normal subgroups, rings, integral, domain and fields.

Unit VI: Counting 7 Hours

Text Books:

Reference Books:
20IT 303 Digital Electronics and Computer Architecture

Teaching Scheme:
Lectures: 3 hours/week

Examination Scheme:
In-Semester: 50 marks
End-Semester: 50 marks
Credits: 3

Prerequisites: Basic Electrical and Electronics Engineering

Course Objectives:
Familiarize students with
1. Basic digital design techniques
2. Design and implement of combinational and sequential logic circuits
3. Fundamental working of Computer Systems
4. Architecture and features of a microprocessor

Course Outcomes:
Students should be able to
1. Comprehend basic binary arithmetic and codes
2. Design simple combinational logic circuits using reduction techniques
3. Design simple Sequential logic circuits
4. Explain Architectural details of a microprocessor
5. Explain Memory management and Interrupts of a microprocessor

Unit – I: Number System
7 Hours
Introduction to Boolean algebra and Number Systems. Signed Binary number representation and Arithmetic: Signed & True Magnitude, 1’s complement, 2’s complement representation and arithmetic.
Logic minimization: Representation of truth-table, Simplification of logical functions, Minimization of SOP and POS forms, don’t care Conditions, K-Maps.

Unit – II: Combinational Logic Design
7 Hours
CLC design using MSI chips – BCD & Excess 3 Adder and Subtractor

Unit – III: Sequential Logic Design
7 Hours
Introduction to sequential circuits. Difference between combinational circuits and sequential circuits, memory element – latch.
Flip- Flops: Design, truth table, excitation table of SR, JK, D, T flip flops. Study of flip flops with asynchronous and synchronous Preset & Clear, conversion from one type to another type of flip flop.
Application of flip-flops – Counters- asynchronous, synchronous and modulo counters. Study of modulus n counter ICs & their applications to implement mod counters.
Unit – IV: Sequential Logic Design 7 Hours

Registers- Buffer register, shift register types - SISO, SIPO, PISO & PIPO, applications of
shift registers - ring counter, twisted ring counter, Sequence generators using counters &
shift register, Sequence Detectors using Mealy and Moore model

Unit – V: Processor Architecture 7 Hours

Introduction to 8086: internal Architecture, generation of physical address,
minimum/maximum mode, study of 8086 supporting chips 8288(Latch), 8284(Clock
Generator), 8286(trans receiver), 8288(Bus controller), Timing diagram read Write machine
cycle.

Unit – VI: Assembly Language Programming and Interrupt Structure 7 Hours

Introduction to assembly language programming- Instruction Descriptions, Assembler
Directives addressing modes, Examples of programming, Procedures and Macros. Interrupt
Structure, Interrupt service routine, Interrupt vector table, hardware and software interrupts,
INTR, NMI, Interrupt response, Execution of ISR, Priorities of interrupt

Text Books:
 049492–4
2. Douglas Hall, “Microprocessors and Interfacing, Programming and Hardware”,

Reference Books:
2. 8086 Intel Manual

Web References:
1. NPTEL Series: Digital Systems Design, Prof. Roychoudhary, IIT Kharagpur
2. NPTEL NOC:Microprocessors and Microcontroller, Prof. Santanu Chattopadhyay, IIT
 Kharagpur
3. NPTEL NOC:Microprocessors and Interfacing, Prof. Shaik Rafi Ahamed, IIT Guwahati
20IT 304 Network Fundamentals

Teaching Scheme:
Lectures: 3 hours/week
Tutorial : 1

Examination Scheme:
In-Semester : 50 Marks
End-Semester : 50 Marks
Credit : 4

Prerequisites: NA

Course Objectives:
Familiarize students with
1. OSI and TCP/IP models
2. Various media access schemes
3. Error detection and control mechanisms
4. IP addressing

Course Outcomes:
Students should be able to
1. Differentiate between OSI and TCP/IP models
2. Analyze the different types of network delays in packet-switched networks
3. Differentiate between data link layer services and multiple access techniques.
4. Design the IP addressing scheme for a small network.

Unit – I Introduction 7 Hours
The Architecture of the Internet, Layering and encapsulation, LAN, WAN, MAN, Networking Devices, Network Topologies Point to Point, Point to Multipoint Topologies.

Unit – II Communicating over the Network 7 Hours
The platform for communications, Protocols, OSI Model, TCP/IP Model, Protocol Data Units and Encapsulation, Comparison between OSI and TCP/IP Model, Network Addressing.

Unit – III Network Layer 7 Hours
IP Addressing, Network Layer Protocol, IPv4, Subnetting, Static Routing, Dynamic Routing and IPv6

Unit – IV Ethernet 7 Hours
Transmission media (Guided and Unguided), Performance (Bandwidth, Throughput, latency and BDP), Digital Modulation and Multiplexing.

Unit – V Physical layer 7 Hours
The Role of Physical Layer, Theoretical Basis for data communication, Digital Modulation and Multiplexing, The Public Switched Telephone Network and Cable Television, Internet over Cable

Unit – VI Data Link Layer 7 Hours
Data Link Layer Design Issues, Sliding Window Protocol, Error Correction and Detection, Medium Access Control Sublayer, Carrier Sense Multiple Access Protocols.
Text Books

2. Behrouz Forozoun, ‘Data Communications and networking’ McGraw Hill Education (5E)

Reference Books

Teaching Scheme:
Practical : 4 hours/week

Examination Scheme:
In-Semester : 25 Marks
Practical : 25 Marks
Credit : 2

Prerequisites: Fundamentals of Programming Language

Course Objectives:
Familiarize students with
1. Linear data structures to solve real world problems
2. Non-Linear data structures to solve real world problems
3. Hashing techniques
4. Debugging of different codes & detect logical errors

Course Outcomes:
Students should be able to
1. Make use of linear data structures to solve a given problem
2. Make use of nonlinear data structures to solve a given problem
3. Utilize appropriate hashing techniques to solve a given problem
4. Test the program for multiple inputs

Suggested List of Laboratory Assignments
The laboratory assignments are designed in a set of group A, B and C such that students will be able to design and implement solution for a given problem. The laboratory assignments of group A, B and C are to be implemented using JAVA object-oriented programming language. Group A assignments are mandatory. Group B assignment is mandatory & may be performed in a group of 2 to 4 students. Group C assignments are extra assignments.

Group A
1. Operations on set
 a) Use Java Collection Framework - Set - addAll (union), retainAll(intersection), removeAll(symmetric difference)
 b) Without using Java Collection Framework - union, intersection, difference, symmetric difference

2. Operations on linked list
 a) Use Java Collection Framework - LinkedList - add, add(index, element), addFirst, addLast, clear, get, getFirst, getLast, remove, removeFirst, removeLast
 b) SLL - Without using Java Collection Framework - add, add(index, element), addFirst, addLast, clear, get, getFirst, getLast, remove, removeFirst, removeLast, reverse
 c) DLL - Without using Java Collection Framework - add, add(index, element), addFirst, addLast, clear, get, getFirst, getLast, remove, removeFirst, removeLast, reverse

3. Operation on stack
 a) Use Java Collection Framework - Stack - push, pop, peek, empty
 b) Without using Java Collection Framework - Stack - push, pop, peek, empty - implement stack as ADT
 c) Using the stack ADT - implement expression conversion algorithms - infix_to_postfix,
infix_to_prefix, postfix_to_infix, prefix_to_infix

4. Operations on queue
 a) Use Java Collection Framework - LinkedList - add, remove, poll, peek, element
 b) Use Java Collection Framework - PriorityQueue - add, remove, poll, peek, element
 c) Without using Java Collection Framework - add, remove, peek - implement queue as ADT
 d) Using the queue ADT - implement priority queue - patient treatment, vehicle traffic management

5. Operations on binary search tree
 a) Use Java Collection Framework - TreeMap
 b) Implement binary search tree and perform the following operations - Insert, Delete, Search,
 Display, mirror image, display level-wise

6. Construct an expression tree from a postfix expression and perform recursive and non-recursive traversals – inorder, preorder and postorder

7. Operation on hash table
 a) Use Java Collection Framework - HashMap
 b) Implementation of Hash table using array and handle collisions using Linear probing,
 without replacement without chaining, without replacement with chaining, with
 replacement without chaining, with replacement with chaining, chaining using linked list

Group B (Any 1)
Design a mini project which uses the different data structures with or without Java Collection Framework. Few suggested assignments:
1. Library management system
2. Blood bank management system
3. Student Attendance management system

Group C (Extra)
1. Implement Huffman coding
2. Implement Heap sort
3. Implement optimal binary search tree
4. Implement threaded binary tree

Text Books
2. Cay S. Horstmann, “Big Java: Early Objects”, John Wiley

Reference Books
20IT 303L Digital Electronics and Computer Architecture Laboratory

Teaching Scheme:
Practical: 2 hours/week

Examination Scheme:
In-Semester: 25 marks
Oral: 25 marks
Credits: 1

Prerequisites: Basic Electrical and Electronics Engineering

Course Objectives:
Familiarize students with
1. Basic digital Integrated Circuits (IC)
2. Analyze and Test basic digital circuits
3. Writing Assembly Language Program
4. Executing Assembly Language Program

Course Outcomes:
Students should be able to
1. Use appropriate IC’s for designing simple digital circuits
2. Implement and test simple digital circuits for various inputs.
3. Use the processor instructions to write basic assembly language programs
4. Apply modular programming using assembly level language

Suggested List of Laboratory Assignments
1. Design (truth table, K-map) and implementation of 4 bit BCD & Excess 3 Adder using IC7483.
2. Implementation of logic functions using multiplexer IC 74153 & decoder IC 74138.
(Verification, cascading & logic function implementation)
3. Design (State diagram, state table & K map) and implementation of 3 bit Up and Down synchronous Counter using master slave JK flip-flop IC 7476
4. Design and implementation of Mod ‘n’ counter with IC7490
5. Design (State Diagram, State Table, K Map) and implementation of Sequence Generator.
6. Write Assembly Language Program for addition and subtraction of two 8 bit numbers
7. Write Assembly Language Program for converting two digit BCD number to its equivalent HEX and vice-versa.
8. Write ALP to perform string operations like
 1. Find length of string
 2. Compare two strings
 3. Concatenation of two strings
 4. Reverse string

Text Books:
Reference Books:
2. 8086 Intel Manual

Web References:
1. NPTEL Series: Digital Systems Design, Prof. Roychoudhary, IIT Kharagpur
2. NPTEL NOC: Microprocessors and Microcontroller, Prof. Santanu Chattopadhyay, IIT Kharagpur
3. NPTEL NOC: Microprocessors and Interfacing, Prof. Shaik Rafi Ahamed, IIT Guwahati
20IT 305L Object Oriented Analysis and Design Laboratory

Teaching Scheme:
Practical: 4 hours/week

Examination Scheme:
In-Semester: -- 25 Marks
Practical: 25 Marks
Credits: 2

Prerequisites: Fundamentals of Programming Language 2
Course Objectives:
Familiarize students with
1. Introduction of UML 2.0 diagrams
2. Class modeling of a system
3. State modeling of a system
4. Interaction modeling of a system

Course Outcomes:
Students should be able to
1. Construct class model from a given description of the system
2. Organize the class model in the form of class relationships
3. Build a state model from a given description of the system
4. Develop the code for the state model in an object oriented language
5. Interpret the given problem description as UML diagrams

Implement a mini project using the following steps as guidelines
1. Identify the classes, their attributes and methods for a given system
2. Convert the identified classes in the system to java code.
3. Identify the relationships among the classes, represent those relationships in a class diagram and code the class diagram into a java code
4. Inspect all the classes and identify whether an object of a class changes its state during its lifecycle, draw the state transition using the state diagram for that object
5. Convert the state transitions into java code
6. Inspect the methods of all the classes and show sequence of method calls to achieve a functionality in a sequence diagram
7. Convert the sequence diagram into a java code
8. Save the persistent data into a file and refine your code

Text Books
1. Michael Blaha, James Rumbaugh Object oriented modeling and Design with UML second edition, Pearson

Reference Books
1. Grady Booch, Object Oriented Analysis and Design with applications third edition, Adison Wesley Object Technology Series