Autonomous Program Structure of
Final Year B. Tech. (Information Technology)
Academic Year: 2019-2020 Onwards

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Scheme Hours /Week</th>
<th>Examination Scheme</th>
<th>Marks</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT 4201</td>
<td>Information and Cyber Security</td>
<td>3 0 0</td>
<td>50 50 0 0</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>PEIT 4201</td>
<td>Program Elective-I</td>
<td>3 0 0</td>
<td>50 50 0 0</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>OE 4201</td>
<td>Open Elective-II</td>
<td>3 0 0</td>
<td>50 50 0 0</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>IT 4202</td>
<td>Information and Cyber Security Laboratory</td>
<td>0 0 2</td>
<td>0 0 50 0</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>IT 4203</td>
<td>Project Phase-II</td>
<td>0 2 16</td>
<td>100 0 50 0</td>
<td>150</td>
<td>10</td>
</tr>
<tr>
<td>IT 4204</td>
<td>Project based Online Course**</td>
<td>2 0 0</td>
<td>50 0 0 0</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>11 2 18</td>
<td>300 150 100 0</td>
<td>550</td>
<td>22</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td>31</td>
<td>550</td>
<td>550</td>
<td>22</td>
</tr>
</tbody>
</table>

**The student shall register and complete the project based online course preferably in semester- I but may complete the same till the end of semester-II.

Program Elective I
1. Principles of Compiler Design
2. Information Retrieval
3. Internet of Things
4. Software Defined Networks

OE 4201 Open Elective-II
1. Unified Communication
IT 4201 Information and Cyber Security

Teaching Scheme:
Lectures: 3 hours/week
Tutorial: NIL

Examination Scheme:
In-Semester: 50 marks
End-Semester: 50 marks
Credits: 3

Prerequisites: Foundations of Computer Networks, Computer Networks

Course Objectives:
Familiarize students with
1. Information Security course surveys central concepts in applied information security and cyber security.
2. Make students aware of the major security risks and attack vectors.
3. Provides tools and practices for building secure systems.
4. Design, develop and support a global security system using the state of mind and reasoning on software systems security.

Course Outcomes:
Students should be able to
1. Implement the cipher techniques.
2. Analyze the various security algorithms and protocols.
3. Use different open source tools for network security and analysis.
4. Develop security systems.

Unit – I Cryptographic Techniques and Algorithms I (07)
Classical Encryption Techniques, Block Ciphers and DES, Basic Concepts in Number Theory and Finite Fields, Advanced Encryption Standard (AES), Block Ciphers Operations,

Unit – II Cryptographic Techniques and Algorithms II (07)
Pseudo Random Number Generation and Stream Ciphers, Public Key Cryptography, Cryptographic Hash Functions, Message Authentication Codes

Unit – III Cryptographic Protocols I (07)
Digital Signatures, Public-Key Certificates, PKI, PKIX, and X.509, CA Hierarchy, User Authentication Protocols, Public-Key Certificates, PKI, PKIX, and X.509, CA Hierarchy

Unit – IV Cryptographic Protocols II (07)
Unit – V \hspace{1cm} \textbf{Network Security} \hspace{1cm} (07)

Unit – VI \hspace{1cm} \textbf{Cyber security} \hspace{1cm} (07)

Electronic Mail Security: Email Security Enhancements, Pretty Good Privacy (PGP), S/MIME Intrusion Detection Malicious Software

Text Books

Reference books

PEIT 4201 Principles of Compiler Design

Teaching Scheme:
Lectures: 3 hrs / week
Tutorial: NIL

Examination Scheme:
In-Semester: 50 marks
End-Semester: 50 marks
Credits: 3

Prerequisites: Data Structures, Theory of Computation, Operating System

Course Objectives:
Familiarize students with
1. Process of compilation.
2. Tools used for the development of compilers and other language translation softwares.
3. Basic issues in code generation and optimization.

Course Outcomes:
Students should be able to
1. Design a lexical analyzer for a subset of C language.
2. Design a syntax analyzer for a subset of C language.
3. Generate intermediate code for the given programming language construct.
4. Apply different code optimization & generation techniques for a given code.

Unit – I: Introduction to Compiler & Lexical Analysis (07)

Introduction to compilers
Design issues, passes, phases, symbol table
Preliminaries, Memory management, Lexical Analysis
Tokens, Regular Expressions, Process of Lexical analysis,
Block Schematic, Automatic construction of lexical analyzer using LEX, LEX features and specification

Unit – II: Syntax Analysis (07)

Syntax Analysis
Grammar (ambiguous, unambiguous, CFG), top-down parser (RDP, Predictive) and bottom-up parsers (SLR, LR-1, LALR), Error detection and recovery, automatic construction of parsers using YACC

Unit – III: Semantic Analysis (07)

Unit – IV: Runtime Storage Management

What is run-time support? Parameter passing methods, Storage allocation, Activation records, Static scope and dynamic scope, Heap memory management, Garbage Collection

Unit – V: Code optimization

Machine Independent: Peephole optimizations: Common Sub-expression elimination, Removing of loop invariants, Induction variables and Reduction in strengths, use of machine idioms

Unit – VI: Code Generation

Basic block, Register allocation and Assignment, Simple code generator, Sethi Ulman algorithm for code generation

Text Books:

Reference Books:

PEIT 4201 Information Retrieval

Teaching Scheme:
Lectures: 3 hrs/week
Tutorial: NIL

Examination Scheme:
In-Semester: 50 marks
End-Semester: 50 marks
Credits: 3

Prerequisites: Data structures

Course Objectives:
Familiarize students with
2. Indexing techniques of Information retrieval System
3. Clustering in information retrieval system
4. Understand information sharing on semantic web

Course Outcomes:
Students should be able to
1. Model the working of information retrieval search system
2. Analyze Search Strategies used in Information retrieval system
3. Evaluate Information retrieval system using different statistical measures
4. Design techniques for information retrieval system

Unit – I: Introduction (07)
Basic Concepts of Information Retrieval, IR system architecture. Automatic Text Analysis: Luhn's ideas, Conflation Algorithm, Porter Stemmer, Retrieval Evaluation: Precision, Recall, F-Score, Mean Average Precision, Mean Reciprocal Rank, User oriented measures

Unit – II: Indexing and Clustering (07)
Indexing and Index Term Weighing, Probabilistic Indexing, Inverted file, Suffix trees & suffix arrays, Signature Files, Clustered files, Cluster Hypothesis, Clustering Algorithms: Single Pass Algorithm, Single Link Algorithm

Unit – III: Search Strategies (07)

Unit – IV: Web Mining (07)
Searching the Web: Challenges, Characterizing the Web, Search Engines, Browsing, Meta-searchers, Web crawlers, Meta-crawler, Web data mining, Finding needle in the Haystack, Searching using Hyperlinks
Unit – V: Semantic Search Systems

Semantic Search systems, Semantic Web, Ontology, Searching across ontologies, semantic web search, Google knowledge graphs

Unit – VI: Trends In Information Retrieval

Text Books:

Reference Books:

PEIT 4201 Internet of Things

Teaching Scheme:
Lectures: 3 hours/week
Tutorial: NIL

Examination Scheme:
In-Semester: 50 marks
End-Semester: 50 marks
Credits: 3

Prerequisites: Computer Networks

Course Objectives:
Familiarize students with
1. Logical and Physical design of IOT
2. IOT architecture and its structural aspects
3. Various IOT Protocols
4. IOT solutions and applications

Course Outcomes:
Students will be able to:
1. Interpret logical and physical design of IOT enabling technologies
2. Link IOT architecture with its different structural aspects
3. Differentiate various IOT protocols
4. Propose IOT solutions for various applications

Unit – I Introduction
Definition and characteristics of IOT, Physical design of IOT: Things in IOT, IOT Protocols, Logical Design of IOT: IOT functional blocks, Logical Design of IoT: Functional block, communication Model, Communication API’s, IoT Enabling Technologies

Unit – II IOT Network Architecture
IOT Architecture, IoT levels and Deployment templates: Level 1 to Level 5, Introduction to M2M, Difference between IoT and M2M, IoT protocol stack, Fog Computing, Edge Computing

Unit – III IOT Physical Devices and Objects
Basic building blocks of IOT Device, Sensors, Actuators, and Smart Objects, Exemplary Devices: Raspberry Pi, Raspberry Pi Interfaces, pcDuino, Beagle Bone Black, CubieBoard, ARDUINO, SCADA

Unit – IV IOT Networking and Addressing techniques
RFID technology, Wireless Sensor Networks, IPv6 Protocol Overview, comparison of IPv4 and IPv6, IPV6 tunneling, IPsec in IPv6, Quality of Service in IPv6

Unit – V IOT Protocols and Cloud offerings
IoT Access Technologies: IEEE 802.15.4, IEEE 802.15.4g and 802.15.4e, IEEE 1901.2a, LoRaWAN, MQTT protocol
Introduction to cloud storage models and communication API’s, web services for IoT

Unit – VI IOT Applications
Smart City, Agriculture, healthcare, Retails, Environment
Text Books

Reference Books

PEIT 4201 Software Defined Networks

Teaching Scheme:
Lectures: 3 hours/week
Tutorial: NIL

Examination Scheme:
In-Semester: 50 marks
End-Semester: 50 marks
Credits: 3

Prerequisites: Foundations of Computer Networks, Computer Networks

Course Objectives:
1. Appraise SDN
2. To comprehend role of data, control, and management planes and their separation
3. Differentiate between network virtualization and network function virtualization
4. Analyze Openflow protocol.

Course Outcomes:
Students should be able to
1. To develop conceptual design of SDN solutions.
2. To apply network virtualisation for industry standard solutions
3. To solve industry case-studies based on SDN.
4. Analyse the functions and components of the SDN architecture.

Unit – I SDN architecture and Fundamentals. (07)
Introduction: The Modern Data Center, Roles and Separation of data, control and management Planes, Advantages and Disadvantages. Need of SDN, Genesis of SDN. Working of SDN: Fundamental characteristics, SDN Devices, SDN controllers, Applications

Unit – II Openflow and Abstraction (07)

Unit – III Network Virtualization (07)

Unit – IV Control Plane (07)
Unit – V Data Plane (07)
Data Plane: Software-based and Hardware-based; Programmable Network, Hardware. Programming SDNs: Northbound Application Programming Interface, Current Languages and Tools, Composition of SDNs.

Unit – VI Network Function Virtualization (07)
Introduction: Concepts, Comparison of NFV and NV, Implementation and Application, Data Center Networks, Application of NFV in LTE, IMS, Content Delivery, Mobile Networks

Text Books

Reference books
1. Vivek Tiwari, SDN and OpenFlow for Beginners, Digital Services, 10: 1-940686-00-8 13: 978-1-940686-00-4
4. Online Reading, http://www.nec-labs.com/~lume/sdn-reading-list.html,
OE 4201 Unified Communication

Teaching Scheme:
Lectures: 3 hours/week

Examination Scheme:
In-Semester: 50 marks
End-Semester: 50 marks
Credits: 3

Prerequisites: Foundations of Computer Networks, Computer Networks

Course Objectives:
Familiarize students with
2. Choose VOIP protocols for unified communications.
3. Analyze contact center as application of unified communications.
4. Interpret emerging technologies/protocols in VOIP communications.

Course Outcomes:
Students should be able to
1. Apply VOIP unified communications and analytics concepts to Contact Center Working.
2. Design and Implement VOIP protocols for telecommunication systems/applications.
3. Interpret and apply current or emerging knowledge in telecommunication engineering.
4. Use relevant mathematics and computer science concepts as tools.

Unit – I **Introduction to digital and IP Telephony** (07)

Unit – II **VoIP Protocols** (07)
H.323 Network Elements, H.323 protocol, H.323 Call flows, SIP Network Elements, SIP Protocols, SIP Call Flows, H.248 protocol : Media Gateways, Media Gateway controllers, commands, Transactions, Contexts, Terminations, Descriptors' Packages

Unit – III **Unified Communications** (07)
Local and Network features, Voice & Data Integration, Collaboration, Mobility, Business Applications: Framework for custom applications, computer Telephony Interface, Application Sequencing.
Unit – IV **Inbound Contact Center**
Call Centers: Introduction, Evolution and classification of Contact Centers.
Inbound Contact Center : Introduction Self Service / Interactive Voice Response, Routing,
Intelligent Routing, VXML
Agent : Skills, Selection Algorithms, Modes, Service Observing, Recording

Unit – V **Outbound Contact Center and Reporting**
Outbound contact center: Introduction, Proactive contact: voice, SMS, E-mail & chat. Contact
Center Reporting: Types of Reports, Business use cases.
Analytics: Agent Performance, Occupancy

Unit – VI **Emerging technologies in Telecommunications**
High Availability: Load balancing, Reliability, Failover & Failback, Location Redundancy,
Hardware footprint, cloud Computing, Emerging Technologies: Google Glass, WebRTC,
Hosting on Cloud.

Text Books

Reference books
1. ITU-T H.323 Packet-based multimedia communications systems
2. ITU-TH.225Call Signaling Protocols and media stream packetization
3. ITU-T H-245 Control protocol for multimedia communication
4. IETF RFC 326131P: Session Initiation Protocol
5. IETF RFC4566 SDP: Session Description Protocol
6. Contact Center for' Dummies, Wiley Publishing Inc.
7. Real Time Communication with WebRTC, O'Reilly Publishing
IT 4202 Information and Cyber Security Laboratory

Teaching Scheme:
Practical: 2 hours/week

Examination Scheme:
Oral exam: 50 marks
Credits: 1

Prerequisites: Foundations of Computer Networks, Computer Networks

Course Objectives:
1. Learn to implement the algorithms DES, RSA, MD5, SHA-1 etc.
2. Make students aware of the major security risks and attack vectors.
3. Provides tools and practices for building secure systems.
4. Learn to use network security like GnuPG, KF sensor, Net Strummer

Course Outcomes:
Students should be able to

1. Implement the cipher techniques
2. Analyze the various security algorithms and protocols
3. Use different open source tools for network security and analysis
4. Develop security systems.

List of experiments:

1. Implement the following SUBSTITUTION & TRANSPOSITION TECHNIQUES concepts (any 2):
 a) Caesar Cipher
 b) Playfair Cipher
 c) Hill Cipher
 d) Vigenere Cipher
 e) Rail fence – row & Column Transformation

2. Implement the following algorithms (any 3)
 a) DES
 b) RSA Algorithm
 c) Diffie-Hellman
 d) MD5
 e) SHA-1

3. Implement the Signature Scheme

4. Demonstrate intrusion detection system (ids) using any tool (snort or any other s/w)

5. Analysis the Security Vulnerabilities of E-commerce services. / Analysis the security vulnerabilities of E-Mail Application
6. Steps to ensure Security of any one web browser (Mozilla Firefox/Google Chrome)

7. Study assignment: (any 1)
 A. Study of different wireless network components and features of any one of the Mobile Security Apps.
 B. Study of the features of firewall in providing network security and to set Firewall Security in windows.
 C. Study of different types of vulnerabilities for hacking a websites / Web Applications.

Text Books

Reference books
The log has to be maintained.

Every project group has to give 2 Reviews in Semester-II
In Review-III, Point 1 to some part of 4 should be completed. Demonstration and discussion with reviewers will be done.
In Review-IV, remaining part from Point 4 to 9 should be completed. Demonstration and discussion with reviewers will be done.
At least one paper should be published in reputed International conference/International journal.
IT 4204 Project Based Online Course

Teaching Scheme:
Lecture: 2 hrs/week

Examination Scheme:
In-Semester: 50 marks
Credits: 2

Course Objectives:

Familiarize students with
1. Exploring technical literature with the purpose of formulating a project statement.
2. Formulate intended future work based on the course they have registered.
3. Developing a prototype for the project statement.

Course Outcomes:

Students should be able to
1. Perform focused study of technical literature relevant to a specific topic.
2. Build independent thinking abilities to approach complex problems.
3. Extract desired knowledge from Online course.
4. Apply course knowledge for implementing the project.

Contents

1. The Project guide will suggest one/two online courses (which students have not studied till date)
2. Multiple courses can be taken by different group member of the same group.
3. Assignments related to project should be completed.