BS-1201 Engineering Mathematics-II

Teaching Scheme: Lectures: 3 Hrs/Week
Tutorial: 1 Hr/Week

Examination Scheme: In-Semester: 50 Marks
End-Semester: 50 Marks

Credits: 4

Course Objectives:

Mathematics is a necessary path to scientific knowledge which opens new perspective of mental activity. Our aim is to provide sound knowledge of engineering mathematics to make the students think mathematically and strengthen their thinking power to analyse and solve engineering problems in their respective areas.

Course Outcomes:

Students will be able to
1. Formulate and solve first order first degree differential equations, and apply it to engineering applications.
2. Interpret and solve single integral using various methods.
3. Trace the curves of a given functions.
4. Solve multiple integrals and apply it to various applications.
5. Find Fourier series expansion for given periodic functions and discrete data.

Unit – I: First order first degree Differential Equation (07)

Definition, Order and degree of Differential Equation, Formation of differential equation, solutions of differential equation, Exact differential equation, Linear differential equation and equation reducible to these types.

Unit – II: Applications of Differential Equations (05)

Applications of differential equations to engineering problems: simple electrical circuits, applications of chemical engineering, applications of mechanical engineering and applications in physics.

Unit – III: Integral Calculus (07)

Unit – IV: Multiple Integrals (08)

Transformation of Co-Ordinate systems Spherical, Polar and Cylindrical, Double and Triple integrals with limit, Double and Triple integrals without limits. Dirichlet's theorem.
Unit – V: Applications of Multiple Integrals

Area of cartesian curves, Area of polar curves, Volume of solid, Mass of plane lamina, Mass of solid.

Unit – VI: Fourier Series and Harmonic Analysis

Definition of Fourier series, Dirichlet’s conditions, full range Fourier series, half range Fourier Sine series, half range Fourier Cosine Series, Practical Harmonic analysis, applications to problems in Engineering.

Text Books:

Reference Books:

BS1202 Physics - II

Teaching Scheme:
Lectures: 2 Hrs / Week
Tutorial: 1 Hr / Week

Examination Scheme:
In - Semester: 50 Marks
End - Semester: 50 Marks
Credits: 3

Course Objectives:

The objective of this course is to provide an ‘algorithmic’ introduction of the basic principles of Quantum Physics to the first year students of engineering. Throughout the course, the applications of Quantum Physics will be discussed by emphasising the laws of combining ‘probability amplitudes’. This will be done through several case studies and experimental situations.

Course Outcomes:

By taking this course, the learner will be able to -

CO — 1: Execute procedures for working out probability distributions for ensembles of identical microscopic systems
CO — 2: Differentiate between domain-specific nature of probability amplitudes in elementary quantum mechanical situations
CO — 3: Justify the use of the laws of combining probability amplitudes in situations involving photons and two-state & multi-state quantum systems

Unit - I: Probability Amplitudes:
The laws for combining amplitudes; The two-slit interference pattern; Scattering from a crystal

Unit - II: Identical Particles:
Bose particles and Fermi particles; Case studies involving use of the exclusion principle

Unit - III: The Dependence of Amplitudes on Time:
Stationary states; Potential energy and energy conservation; The precession of a spin-half particle

Unit - IV: The Hamiltonian Matrix:
Resolving state vectors; How states change with time; Hamiltonian Matrix

Unit - V: Two-state Systems and Single Qubit Logic Gates:
Spin-half particles in magnetic field; Pauli spin matrices; Single Qubit Logic Gates, Polarisation states of the photon

Unit - VI: Band Theory of Solids and Semiconductor Physics:
States for an electron in a lattice; Electrons and holes in semiconductors; The Hall effect; Rectification at a semiconductor junction; The transistor
Text Book:

Reference Books:
BS-1203 Chemistry II

Teaching Scheme:
Lectures: 2 Hrs/Week
Tutorial: 1 Hr/Week
Credits: 3

Examination Scheme:
In-Semester: 25 Marks
End-Semester: 50 Marks

Course Objectives:
The Chemistry course is designed for the learners to develop a sound background of fundamental concepts and principles relevant in the engineering context. The course facilitates undergraduates to evaluate the role of chemical substances in different methods of preparation and analysis. They analyze chemical processes related to engineering applications. Also, the course inculcates basic problem-solving skills involving chemistry principles.

Course Outcomes:
By taking this course, the students will be able to -----

CO1: State laws, principles, formulae, definitions, and properties.

CO2: Comprehend synthesis procedures and analytical methods in qualitative and quantitative estimation.

CO3: Apply principles of fundamental chemistry for solving problems.

CO4: Analyze chemical processes for engineering applications based on chemical reactions and evaluate the role of chemical substances.

CO5: Critique the effect of different parameters on the properties of chemical substances.

Unit – I: Instrumental methods of Analysis II
Basic principles, theory, instrumentation, and applications of Uv-Vis spectrophotometry; Flame photometry.

Unit – II: Polymer Chemistry
Basic terms, molecular weight determination, types of polymerization and its mechanism (free radical), compounding of plastics, Speciality polymers (Conducting polymers, Biodegradable polymers, Liquid crystal polymers).
Unit – III: Corrosion (04)
Dry and wet corrosion mechanism, types, factors affecting corrosion, Protection against corrosion: Cathodic and anodic protection, metallic coatings.

Unit – VI: Chemistry of fuels (09)
Calorific value, Bomb & Boys’ calorimeter, Proximate and Ultimate analysis of coal, Crude oil: refining, knocking, alternate fuels (Power alcohol, Biodiesel)

Unit – V: Phase Rule (03)
Gibbs Phase Rule, one Component system- Water system, Two component system- (Pb-silver alloy). Applications and limitations of phase rule.

Unit – VI: Nanomaterials (03)
Introduction to nanomaterials, synthesis by top down and bottom up methods, properties and typical applications of nanomaterials.

Text Books:

Reference Books:
ES-1201 Basic Electrical and Electronics Engineering – II

Teaching Scheme:
Lectures: 3 Hrs/Week
End-Semester: 50 Marks

Examination Scheme:
In-Semester: 25 Marks

Pre-requisite: Semiconductor physics

Course Objectives:
1. To make students familiar with the fundamental concepts of AC circuits
2. To familiarise the students with three phase supply
3. To develop a clear understanding of operation and application of transformer
4. To make students familiar with Digital Circuits
5. To introduce Basics operational amplifier (IC 741) and its applications

Course Outcome:
Having successfully completed this course, the student will be able to:
1. Analyze and determine parameters of single phase AC circuit.
2. Quantify parameters of single phase transformer related to its operation and use.
3. Develop applications of logic gates for building combinational and sequential circuits.
5. Analyze characteristics of different power devices and transducers.

Unit I: AC Circuits (08)
Behavior of pure R,L,C in ac circuits, Series and parallel RL, RC and RLC circuits, concept of Impedance and admittance, power triangle and power factor. Resonance in series and parallel RLC circuit, Three phase voltage generation and waveform, star and delta balanced systems. Relationship between phase and line quantities, phasor diagram, power in a three phase circuit.

Unit II: Single phase Transformers (07)
1 Φ transformer: concept, types, working, ideal transformer, practical transformer, equivalent circuit, phasor diagram, efficiency and regulation calculations. Introduction to three phase transformer.

Unit III: Digital Electronics (07)
Binary number systems and binary arithmetic, basic gates, implementation of basic gates using universal gates, Boolean algebra, standard representation of logic functions (SOP and POS forms), Introduction of Combinational logic circuits like multiplexer, demultiplexer, half adder and full adder, Introduction of Sequential logic circuits like flip-flops (SR, D), counters and shift registers.
Unit IV: OPAMP (07)
Introduction to operational amplifiers, opamp configurations, modes and parameters, Negative feedback concept and applications like comparators, summing amplifiers, integrators and differentiators.

Unit V: POWER DEVICES (07)
Construction, characteristics and turn on mechanism of SCR, two transistor analogy of SCR, concept of line and forced commutation. Introduction to phase control concept. Construction, characteristics of IGBT and MOSFET.

Unit VI: Transducers (06)
Introduction to Transducers, selection of transducers, classification of transducers. Types of transducers such as LVDT, RTD, Thermistor and strain gauge.

Books:-
Text Books:-

Reference Books:-

3. H.S. Kalsi “Electronic Instrumentation”,TMH publication,2nd edition

ES 1202 Fundamentals of Programming Languages - II

Teaching Scheme: Examination Scheme:
Lecture: 1 Hr. / Week Insem: 25 Marks
Credits: 1

Course Objectives:
1. Understand role of functions and it’s utility in programming.
2. Understand the use of pointers in memory management.
3. Understand the utility of need and utility of user defined data types.
4. Learn and explore mobile application development environment.

Course Outcomes:
1. Students will be able to write program using functions
2. Students will be able to write code for effective memory management
3. Students will be able to write code using appropriate user defined data types for various applications
4. Students will be able to develop simple application using structures

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
<th>No. of Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Functions in C</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>Concept of Function, Function declaration, Function definition, Function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Call, Return statement, Passing parameters: Call by value, Recursion</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Strings</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>Introduction, Reading Strings, Writing Strings, Strings Operations: Counting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>characters in String, Converting into upper case and lower case,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concatenation, Appending, Comparing, Reverse</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Introduction to Pointers in C</td>
<td>03</td>
</tr>
<tr>
<td></td>
<td>Understanding Computer memory, Introduction to Pointers, Declaring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pointer variable, Function Call by reference, Pointer and Arrays, Role of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pointers in Passing an Array to a Function, Pointers and Strings</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Structures</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>Introduction to Structures: Declaring Structure and Structure Variables,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Initializing Structure, Accessing members of Structure</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Unions, Enumeration Data types</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>Declaring Union and its members, Accessing members of Union, Enumeration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Types</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mobile application Development</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td>Introduction, Web apps vs. Native apps, Introduction to mobile operating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System like Android / IOS / Windows, Features and architecture of Mobile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating System, Generating GUI and Views, Layouts and Application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Components, Creating simple mobile application</td>
<td></td>
</tr>
</tbody>
</table>
Text Books:

Reference Books:

ES1203 Basic Mechanical Engineering

Teaching Scheme:
- **Lectures:** 3Hrs/Week

Examination Scheme:
- In-Semester: 25 Marks
- End-Semester: 50 Marks

Credits: 3

Course Objectives:
To provide an overview of mechanical engineering systems (Power plant, Manufacturing plant, Maintenance systems, transmission systems). To enable students to understand terminology used in Mechanical engineering with its significance. To make student understand concept of Mechatronics System.

Course Outcomes as per previous syllabus:
Students will be able to

<table>
<thead>
<tr>
<th>CO1</th>
<th>Distinguish between types of Industries, Its safety concerns, professional hazards and ethics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>Identify engineering materials, their properties, Different types machine elements and their Applications in engineering practice</td>
</tr>
<tr>
<td>CO3</td>
<td>Identify basic manufacturing processes and their features</td>
</tr>
<tr>
<td>CO4</td>
<td>Compare and Contrast various types of Power producing and Power absorbing devices</td>
</tr>
<tr>
<td>CO5</td>
<td>Differentiate between open and closed loop system (Mechatronics)</td>
</tr>
</tbody>
</table>

Unit – I: Introduction to basic mechanical engineering (06)hours
- Industry overview-Comparison between process, product and service industry. Work environment for Mechanical industries, role of a mechanical engineer, ethics, professional hazards and safety concerns in mechanical industry. Typical manufacturing method of a product.

Unit – II: Introduction to thermal engineering (08)hours
- Thermodynamic system, properties, states, process, cycle, first law of thermodynamics, application of first law to open and closed systems, second law of thermodynamics, conceptual difference between heat engine, heat pump and refrigerator, significance of efficiency and co-efficient of performance. Numerical on appropriate topics.

Unit – III: Power producing devices and power absorbing devices (08)hours
- Power producing devices-Internal combustion engines and turbines, power plants.
- Power absorbing devices-Centrifugal pumps, reciprocating units, vapour compression refrigeration, air conditioning systems.
- Energy management system-fluctuations in demand-supply of energy, need of power grid, concept of energy audit.

Unit – IV: Introduction to design engineering (08)hours
- Introduction to engineering materials, elements and principles of engineering design, basic procedure, Basic requirement, standards in design, aesthetic and ergonomic considerations in design.
- Basic machine elements, shaft, key, coupling, bearing, clutch and brake.
- Mechanical drives, belt, chain and gear.

Unit – V: Introduction to manufacturing (08)hours
- Operation on different machine tools, lathe, Milling, Drilling.
- Joining of metals, welding-gas and arc, TIG, MIG, Soldering, brazing.
- Hot and cold working-Forging, rolling, extrusion.

Unit – VI: Introduction to Mechatronics (06)hours
- Definition(S) of Mechatronics, Mechatronics system Components, Levels of Mechatronics system, Examples of Mechatronics (products and systems in manufacturing), Advantages of Mechatronics with Traditional Systems.

Text Books:

Reference Books:
- Nptel course112105127/1, 112105127/2
ES 1204 Engineering Mechanics

Teaching Scheme: Examination

Scheme:

Lectures: 2Hrs/Week In-Semester T1: 25
Marks

Tutorial: 1Hr/Week In-Semester T2: 25 Marks

End-Semester: 50 Marks

Credits: 3

Course Objectives:

1. To develop the ability of students to analyze any problem in a simple and logical manner.
2. To make the students understand the fundamental principles of mechanics which are the foundation of much of today’s engineering.
3. To develop logical thinking of the students for application in engineering.
4. To provide an introduction to the basic quantities of mechanics.

Course Outcomes:

A student should be able to obtain/develop:

1. An ability to apply knowledge of mathematics, science and engineering
2. A recognition of the need for, and an ability to engage in, life-long learning.
3. Application of Newton’s laws of motion
4. Knowledge of kinematic & kinetic analysis.

Unit – I: Introduction to Statics (06)

a) Fundamental concepts and principle (The parallelogram law of addition of forces, the principle of transmissibility, Newton's laws of motion, Newton's law of gravitation).
 Introduction to a force in a plane, Types of force system, resolution & composition of forces, Methods of composition to find resultant, moment of force, Varignon’s theorem, couple, equivalent force couple system.

b) Introduction to force in a space, problems on resultant of concurrent force system

c) Equilibrium- Introduction to concept of equilibrium, Conditions of equilibrium, Free body diagram, equilibrium under different forces, equilibrium of concurrent parallel & general forces in a plane.
Unit – II: Introduction to type of Supports and Beam (05)
 a) Types of supports (Fixed, roller, hinged support)
 Types of loads on a beam (point load, uniformly distributed load, uniformly varying load)
 Types of beams (simple beam, cantilever beam, compound beam)
 b) Problems on Reactions & analysis of beams
 c) Centroid- Definitions (Center of gravity of two dimensional body, center of mass, centroid),
 procedure to find centroid of regular plane lamina.

Unit – III: Introduction to Friction (03)
Definition and classification of friction, coefficient of static and kinetic friction, angle of friction,
angle of repose, problems on block friction and ladder friction

Unit – IV: Rectilinear Motion (05)
 a) Variables in Rectilinear motion- Time, Position, Displacement, Distance travelled,
 Velocity, Acceleration
 Equations of motion for constant acceleration & motion under gravity,
 variable acceleration, relative motion based on kinematic equations.
 b) Application of Newton’s second law of motion for rectangular co-ordinate system (D’Alembert's principle)

Unit – V: Curvilinear Motion (05)
 a) Equation of motion in rectangular components, Normal & Tangential components, Radial & Transverse components.
 b) Projectile motion- Definition and derivation (time of flight, horizontal range, angle of projection, maximum height, trajectory), Projectile on horizontal plane only

Unit – VI: Work Energy Principle (04)
 a) Introduction and definition of Work, power, energy, conservative & non-conservative forces, Conservation of energy, work-energy principle.
 b) Problems on Work done by different forces (External force, Frictional force, Gravitational force, spring force).

Text books:
Reference books:

ES-1205 Basic Electronics and Electrical Engineering Lab- II

Teaching Scheme: Laboratory: 2 Hrs/Week

Examination Scheme: End-Semester: 25 Marks

Pre-requisite: Instruments, Electronics and electrical components, semiconductor physics.

Course Objectives:
1. To make students familiar with the fundamental concepts of single phase AC circuits
2. To make students familiar with three phase supply
3. To demonstrate working of single phase transformer
4. To explain combinational logic circuits
5. To introduce Basics operational amplifier (IC 741) and its applications

Course Outcome:
Having successfully completed this course, the student will be able to:
1. Apply fundamental concepts of single phase and three phase AC circuits.
2. Test performance parameters of single phase transformers.
3. Implement basic analog and digital circuits.
4. Verify characteristics of SCR and transducer.

List of Practicals:
1. Performance analysis of L-C-R series circuit.
2. Load test on single phase transformer for determination of voltage regulation.
4. Analysis of summing amplifier and difference amplifier using OPAMP.
5. Design and implementation of half adder and full adder circuits.
6. Illustrate effect of variation of displacement on output voltage of LVDT.
7. Verification of static characteristics of SCR.
8. Soldering Techniques (any small circuit like clippers, clamper, circuits using basic gates).
<table>
<thead>
<tr>
<th></th>
<th>Section 1 (any 07 assignments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Write a C program to swap 2 integers using user defined functions (call by value, call by reference).</td>
</tr>
<tr>
<td>2</td>
<td>Write a program in C to compute the factorial of the given positive integer using recursive function.</td>
</tr>
<tr>
<td>3</td>
<td>Write functions to convert feet to inches, convert inches to centimeters, and convert centimeters to meters. Write a program that prompts a user for a measurement in feet and converts and outputs this value in meters. Facts to use: 1 ft = 12 inches, 1 inch = 2.54 cm, 100 cm = 1 meter</td>
</tr>
<tr>
<td>4</td>
<td>Write a menu driven program to perform following operations using Array of integers like (accept, display, print alternate number, sum of all numbers, search a number).</td>
</tr>
<tr>
<td>5</td>
<td>Write a program in C to sort n integers using bubble sort.</td>
</tr>
<tr>
<td>6</td>
<td>Write a menu driven program to perform string operations using library functions.</td>
</tr>
<tr>
<td>7</td>
<td>Write a menu driven program to perform string operations using user defined functions.</td>
</tr>
<tr>
<td>8</td>
<td>Define an integer pointer array of 10 integers. Initialize them to any integer values from the keyboard. Find the sum, average, minimum, and maximum of these 10 integers. Sort the 10 integers in descending order.</td>
</tr>
<tr>
<td>9</td>
<td>Write a program in C to compute addition / subtraction / multiplication of two matrices. Use functions to read, display and add / subtract / multiply the matrices.</td>
</tr>
<tr>
<td>10</td>
<td>For a class an examination is conducted and the results for the students of all the 5 subjects are recorded. Write C program to display the record of students. On the basis of the record compute: i. The average score of class ii. Highest score and lowest score of class iii. Marks scored by most of the students iv. List of students who were absent for the test</td>
</tr>
</tbody>
</table>
11. Write a menu-based program in C that uses a set of functions to perform the following operations:
 i. reading a complex number
 ii. writing a complex number
 iii. addition of two complex numbers
 iv. subtraction of two complex numbers
 v. multiplication of two complex numbers
 vi. Represent the complex number using a structure.

12. Write a C program to create an employee database using structure and perform operations such as accept, display, search by name, search by number, update a record.

<table>
<thead>
<tr>
<th>Section 2 (any 02 assignments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
| 4 | A factory has 3 division and stocks 4 categories of products. An inventory table is updated for each division and for each product as they are received. There are three independent suppliers of products to the factory:
 (a) Design a data format to represent each transaction.
 (b) Write a program to take a transaction and update the inventory.
 (c) If the cost per item is also given write a program to calculate the total inventory values. |
| 5 | Write a program that compares two given dates. To store date use structure say date that contains three members namely date, month and year. If the dates are equal then display message as "Equal" otherwise "Unequal". |
Create a structure to specify data of customers in a bank. The data to be stored is: Account number, Name, Balance in account. Assume maximum of 200 customers in the bank.

(a) Write a function to print the Account number and name of each customer with balance below Rs. 100.
(b) If a customer request for withdrawal or deposit, it is given in the form: Acct. no, amount, code (1 for deposit, 0 for withdrawal)
Write a program to give a message, “The balance is insufficient for the specified withdrawal”.

An automobile company has serial number for engine parts starting from AA0 to FF9. The other characteristics of parts to be specified in a structure are: Year of manufacture, material and quantity manufactured.

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 3 (study assignment)</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>